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This paper describes a theory of surface Love waves propagating in a layered elastic waveguide loaded on
its surface by a viscous (Newtonian) liquid. An analytical expression for the complex dispersion equation
of Love waves has been established. The real and imaginary parts of the complex dispersion equation
were separated and resulting system of nonlinear algebraic equations was solved numerically. The influ-
ence of the viscosity of liquid on the dispersion curves of phase velocity, the wave attenuation and the
distribution of the Love wave amplitude is analyzed numerically. The propagation loss is produced only
by the viscosity of liquids. Elastic layered waveguide is assumed to be loss-less. The numerical solutions
show the dependence of the phase velocity change, the wave attenuation and the wave amplitude distri-
bution in terms of the liquid viscosity and the wave frequency. The results of the investigations are fun-
damental and can be applied in the design and development of liquid viscosity sensors and biosensors, in
Non-Destructive Testing (NDT) of materials, in geophysics and seismology.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Love waves have been applied successfully in many of the sci-
entific and technological fields, such as geophysics, seismology
and earthquake engineering (Luo et al., 2010; Bautista and Stoll,
1995; Boxberger et al., 2011; Fukao and Abe, 1971), nondestructive
testing and material characterization (Kuznetsov, 2010; Kiełczyńs-
ki and Szalewski, 2011). In recent years, Love-wave-based devices
have been developed for use as viscosity sensors (Kiełczyński and
Płowiec, 1989; Rostocki et al., 2010; Kiełczyński et al., 2011; Rai-
mbault et al., 2008; Chen and Liu, 2010), biosensors (Länge et al.,
2008; Oh et al., 2009), and chemical sensors (Wang et al., 2008).

There are a number of papers concerning the propagation of
acoustic surface waves in waveguides covered with a viscous liquid
(e.g. Kim, 1992; Wu and Wu, 2000; Guo and Sun, 2008). However a
detailed quantitative analysis of Love wave propagation in wave-
guides loaded with Newtonian liquid is still lacking.

Love wave is a transverse surface wave having one component
of mechanical displacement, which is parallel to the surface and
perpendicular to the direction of wave propagation. Love waves
propagate in an elastic layered structures (waveguides) consisting
of an elastic surface layer rigidly bonded to the elastic substrate.
The condition for the existence of Love waves is that the bulk
transverse wave velocity in the layer is lower than that in the sub-
strate. It was Love who first put forward the theory of this type of
waves in 1911.
ll rights reserved.
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ki).
In this study, the surface of the waveguide is in contact with a
viscous liquid. Love waves propagating in such waveguides under-
go attenuation, hence, the wave number of the Love wave becomes
complex:

k ¼ k0 þ ja ð1Þ

where j ¼
ffiffiffiffiffiffiffi
�1
p

.
The real part of the wave number k0 determines the phase

velocity of the Love wave. The imaginary part of the wave number
a is an attenuation coefficient of the Love wave.

In this paper we perform a rigorous mathematical analysis of
the problem of the Love wave propagation in the waveguides cov-
ered with a viscous liquid. The effect of the liquid viscosity g on the
phase velocity of Love waves and attenuation is presented and ana-
lyzed. Subsequently, the plots of phase velocity and attenuation of
Love waves in function of frequency for various values of viscosity
are given. Moreover, the dependencies of the Love wave amplitude
versus the distance from the waveguide surface are established
and plotted.

The results obtained in this paper are fundamental and can pro-
vide essential data for the design and development of Love-wave-
based liquid sensing devices.

2. Mathematical formulation of the problem

2.1. Physical model

The waveguide structure in which the Love wave propagates
consists of a loss-less elastic surface layer deposited on a loss-less
elastic substrate, see Fig. 1.
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Fig. 1. Geometry of a Love wave waveguide. The waveguide surface (x2 = �D) is in
contact with a semi-infinite viscous liquid. Here, l1, l2 and q1, q2 correspond
respectively, to the shear modulus and mass density in the surface layer (index 1)
and in the substrate (index 2). g and ql are the viscosity and mass density of a
viscous liquid. x1 is the direction of propagation. Love wave is polarized along the x3

direction. D is the thickness of the elastic surface layer.
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Bulk transverse wave velocity in the layer v1 = (l1/.1)1/2 is
smaller than the corresponding shear wave velocity v2 = (l2/.2)1/2

in the substrate. The waveguide surface is loaded with a viscous
(Newtonian) liquid that occupies half-space (x2 < �D). The mechan-
ical displacement of the Love wave u3 is polarized along the x3 axis,
perpendicular to the direction of propagation x1. The waveguide
surface is at x2 = �D. The considered problem is two-dimensional,
having no variation along the x3 axis.

The Love wave exhibits a multimode character. In many practi-
cal applications (e.g., in sensors and NDT) the most important is the
fundamental mode of Love waves. Therefore, in this study we have
restricted our attention to the propagation of the fundamental (the
lowest) mode of Love waves.

Love waves can be generated experimentally using, for example
a piezoelectric plate transducer (Kiełczyński and Szalewski, 2011).
Plate transducer (e.g., made of piezoelectric PZT ceramics) is rigidly
bonded to the Love wave waveguide face and excited to shear
vibrations parallel to the surface of the waveguide (along the x3

axis). Generated in this way impulses of the Love wave propagate
along the waveguide surface (along the x1 axis). Theoretical and
experimental analysis of the generation of SH (shear horizontal)
surface waves with a plate transducer is shown in (Kinh and
Pajewski, 1980).
2.2. Governing differential equations

2.2.1. Viscous liquid region (x2 < �D)
The velocity field v3 (of the SH acoustic wave) in a viscous liquid

(x2 < �D) is governed by the Navier–Stokes equation:
@v3

@t
� g

ql

@2

@x2
1

þ @2

@x2
2

 !
v3 ¼ 0 ð2Þ
where g is the viscosity and ql density of a liquid.
2.2.2. Elastic surface layer (0 > x2 > �D)
The mechanical displacement field u3 (of the SH acoustic wave)

in the surface layer (0 > x2 > �D) fulfills the following equation of
motion:

1
v2

1

@u3

@t2 ¼
@2

@x2
1

þ @2

@x2
2

 !
u3 ð3Þ

where v1 = (l1/q1)1/2 is the bulk shear wave velocity in the layer.

2.2.3. Elastic substrate (x2 > 0)
The mechanical displacement field u3 (of the SH acoustic wave)

in the substrate (x2 > 0) satisfies the equation of motion as follows:

1
v2

2

@u3

@t2 ¼
@2

@x2
1

þ @2

@x2
2

 !
u3 ð4Þ

where v2 = (l2/q2)1/2 is the bulk shear wave velocity in the
substrate.

2.3. Propagation wave solution

2.3.1. Elastic surface layer (0 > x2 > �D)
We postulate the following solution of the Eq. (3) describing the

mechanical displacement field uð1Þ3 of the Love wave in the surface
layer:

uð1Þ3 ¼Wðx2Þ � exp½jðk � x1 �xtÞ� ð5Þ

where k is the complex wave number, x is the angular frequency.
Substitution of Eq. (5) into Eq. (3) results in:

W 00ðx2Þ � k2
1 � k2

0

� �
�Wðx2Þ ¼ 0 ð6Þ

where the superscript prime denotes the differentiation with re-
spect to x2. The solution of Eq. (6) can be expressed as:

Wðx2Þ ¼ C1 � sinðq � x2Þ þ C2 � cosðq � x2Þ ð7Þ

where

q ¼ k2
1 � k2

� �1=2
; k1 ¼

x
v1

C1 and C2 are arbitrary constants
The shear stress component that will be used in boundary con-

ditions is given by:

sð1Þ23 ¼ l1
@uð1Þ3

@x2
¼ C1 � l1 � q � cosðq � x2Þ � C2 � l1�q � sinðq � x2Þ ð8Þ
2.3.2. Elastic substrate (x2 > 0)
We consider the following solution of Eq. (4) of the mechanical

displacement field uð2Þ3 of the Love wave in the substrate:

uð2Þ3 ¼ Uðx2Þ � exp½jðk � x1 �xtÞ� ð9Þ

Substituting Eq. (9) into Eq. (4) yields:

U00ðx2Þ � k2 � k2
2

� �
� Uðx2Þ ¼ 0 ð10Þ

As a solution of Eq. (10) we choose:

Uðx2Þ ¼ C3 � expð�b � x2Þ ð11Þ

where

b ¼ k2 � k2
2

� �1=2

k2 ¼
x
v2

and ReðbÞ > 0

C3 is an arbitrary constant:
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This solution represents SH surface wave that amplitude decays
to zero, when x2 ?1.

The shear stress component needed in the boundary condition
is given by:

sð2Þ23 ¼ l2
@uð2Þ3

@x2
¼ C3l2ð�bÞ � expð�b � x2Þ � exp½jðkx1 �xtÞ� ð12Þ
2.3.3. Viscous liquid region (x2 < �D)
The solution of Eq. (2) of the velocity field v3 (of the Love wave)

in the viscous liquid is sought in the form:
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Fig. 2. Phase velocity dispersion curves in function of liquid viscosity for various values
v3 ¼ Vðx2Þ � exp½jðk � x1 �xtÞ� ð13Þ

Substitution of Eq. (13) into Eq. (2) gives:

V 00ðx2Þ � k2 � jx
ql

g

� �
� Vðx2Þ ¼ 0 ð14Þ

Solving Eq. (14), we get:

Vðx2Þ ¼ C4 � expðk1 � x2Þ ð15Þ

where
(c)  

(d)  
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k1 ¼ k2 � jx
ql

g

� �1=2

and Reðk1Þ > 0

C4 is an arbitrary constant:

The condition Re(k1) > 0 assures that the Love wave amplitude in
a liquid decays to zero with increasing distance from the waveguide
surface x2 ? �1.

The shear stress component needed in the boundary condition
is given by:

sðlÞ23 ¼ g
@v3

@x2
¼ C4 � g � k1 � expðk1 � x2Þ � exp½jðkx1 �xtÞ� ð16Þ
2.4. Boundary conditions

At the interface between the elastic surface layer and the sub-
strate and the interface between the surface of the layer and a li-
quid, the mechanical displacement u3 and the shear stress s23

have to fulfill the conditions of continuity, i.e:

1. Continuity of the displacement field u3 and stress s23 at the
solid–liquid interface (x2 = �D):
@uð1Þ3

@t

�����
x2¼�D

¼ v3jx2¼�D ð17Þ

sð1Þ23

���
x2¼�D

¼ sðlÞ23

���
x2¼�D

ð18Þ
2. Continuity of the displacement field u3 and stress s23 at the
interface between the layer and the substrate (x2 = 0):
uð1Þ3

���
x2¼0
¼ uð2Þ3

���
x2¼0

ð19Þ

sð1Þ23

���
x2¼0
¼ sð2Þ23

���
x2¼0

ð20Þ
0 20 40 60 80 100

Viscosity [Pas]

0

50

100

150

200

250

At
te

nu
at

io
n 

[N
ep

er
/m

]

Cu on Steel

1 MHz

2 MHz

3 MHz

 5 MHz

4 MHz

Fig. 3. Dispersion curves of the attenuation in function of liquid viscosity for
various values of frequency.
2.5. Dispersion relations

Substitution of (5), (7)–(9), (11)–(13), (15) and (16) into (17)–
(20) results in the set of four linear and homogeneous equations
for coefficients C1, C2, C3 and C4. For nontrivial solution, the deter-
minant of this set of equations has to equal zero. This leads to the
following (complex) dispersion relation:

sinðqDÞ � fðl1Þ
2 � q2 þ l2 � b � k1 � jxgg � cosðqDÞ � fl1 � l2 � b

� q� l1 � q � k1 � jxgg
¼ 0 ð21Þ

Quantities q, b and k1 in Eq. (21) are complex.
Eq. (21) is complex dispersion equation of Love waves propagat-

ing in an elastic layered waveguide loaded on the surface with a
viscous Newtonian liquid.

After separating the real and imaginary parts of Eq. (21) we ob-
tain the following system of nonlinear algebraic equations (see
Appendix):

Aðl1;q1;l2;q2;g;ql;D;x; k0;aÞ ¼ 0 ð22Þ
Bðl1;q1;l2;q2;g;ql;D;x; k0;aÞ ¼ 0 ð23Þ

Eqs. (22) and (23) constitute a system of nonlinear algebraic equa-
tions with unknowns k0 and a.

The system of nonlinear Eqs. (22) and (23) was solved using the
Newton method with a computer package Scilab. This method for
the efficient solution of Eqs. (22) and (23) requires an appropriate
choice of initial approximations. After finding a solution (k0,a), one
can calculate the phase velocity of the Love wave v = x/k0.
Imaginary part a of the wavenumber k represents the attenuation
of the Love wave per unit length in the direction of propagation.

3. Numerical results

Numerical calculations were performed on the example of the
Love wave waveguide structure composed of an isotropic, homoge-
neous, Cu surface layer deposited on an isotropic, homogeneous
steel substrate. The surface of the Cu layer is in contact with a vis-
cous liquid half-space (x2 < �D). In the numerical computations the
following values of parameters were assumed:
For Cu
 For steel

l1 = 3.91 � 1010 N/m2
 l2 = 8.02 � 1010 N/m2
q1 = 8.9 � 103 kg/m3
 q2 = 7.8 � 103 kg/m3
v1 = (l1/q1)1/2 = 2096 m/s
 v2 = (l2/q2)1/2 = 3206.5 m/s
The thickness D of the surface layer was 0.4 mm. The density of
the liquid was assumed as ql = 1 � 103 kg/m3.

Losses in the Cu layer and steel substrate were neglected. The
only source of losses is the viscosity of the liquid.

Numerical analysis was performed in the frequency range from
0.5 to 5 MHz, and for values of viscosity from 0.1 to 100 Pas.

3.1. Phase velocity versus viscosity (f = const).

Fig. 2a–e show the effect of viscosity of a viscous liquid on the
Love wave phase velocity for various values of frequency
(f = 1,2,3,4 and 5 MHz).

It can be seen from Fig. 2a–e that with the increase of viscosity,
the phase velocity decreases. Only for higher values of frequency
(f = 4 and 5 MHz) the phase velocity of the Love wave initially de-
creases and then starts to augment with an increase in viscosity of
the liquid (Fig. 2d and e).

A similar phenomenon was observed by (Guo and Sun, 2008) in
the case of Bleustein–Gulyaev waves propagating in a waveguide
loaded with a viscous liquid. Bleustein–Gulyaev waves are also
SH surface acoustic waves that propagate in the metalized piezo-
electric semi-space. Possible physical explanation for this
phenomenon may be that a high viscosity liquid loading the
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waveguide surface stiffens the material in the surface layer. This
can cause an increase in the phase velocity of the Love wave.
3.2. Attenuation versus viscosity (f = const.)

Fig. 3 shows changes of attenuation in function of liquid viscos-
ity at various values of frequency (f = 1,2,3,4 and 5 MHz).

It is seen from Fig. 3 that wave attenuation increases monoton-
ically with the increase of liquid viscosity.
3.3. Phase velocity versus frequency (g = const.)

Fig. 4 illustrates the influence of the viscosity of liquid on the dis-
persion curves of phase velocity for viscosities g = 0, 10 and 50 Pas.

Fig. 4 indicates that the phase velocity decreases with the in-
crease of liquid viscosity.
3.4. Attenuation versus frequency (g = const.)

The dispersion curves of the attenuation versus frequency were
also calculated and plotted as shown in Fig. 5.

Fig. 5 shows that the attenuation a of the Love wave is a mono-
tonic function of the frequency.
3.5. Love wave amplitude distribution

Variation with depth x2 of the mechanical displacement of the
Love wave propagating in the Cu on steel elastic waveguide loaded
on the surface with a viscous liquid semi-space is shown in Fig. 6.

In the viscous liquid region variations of the mechanical dis-
placement with depth exhibit oscillatory behavior.

For g = 10 Pas and f = 2 MHz, the penetration depth equals
d = 40lm.

The presence of a viscous liquid has little effect on the mechan-
ical displacement distribution in the elastic surface layer and the
substrate.
4. Conclusions

The propagation of Love waves in the elastic layered waveguide
is investigated analytically and numerically. The surface of the
waveguide is loaded with a viscous (Newtonian) liquid. The pres-
ence of a viscous liquid on the waveguide surface introduces losses
and the Love wave exhibits attenuation as it travels. The occur-
rence of losses causes that the mathematical analysis of the prob-
lem is much more complicated.

Analytical form of the complex dispersion equation was ob-
tained. After separating the real and imaginary parts of the disper-
sion equation, the resulting system of nonlinear algebraic
equations was numerically solved. As a result, the graphs of phase
velocity on frequency (for a given viscosity) and the phase velocity
curves as a function of liquid viscosity at a fixed values of fre-
quency were obtained. Moreover, the wave attenuation curves of
Love waves versus the liquid viscosity and frequency were
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obtained. It was found that the increase in viscosity reduces the
phase velocity and augments the attenuation of the wave.

Love wave amplitude distribution as a function of depth x2, for
liquid viscosity of 10 Pas has also been determined. It was stated
that for a viscous liquid loading, the amplitude of the Love wave
varies with depth in an oscillatory way, and decays to zero for
x2 ? ±1.

The results of this work are fundamental and can be applied in
the design of liquid viscosity sensors and biosensors, in geophysics,
seismology and in the NDT of materials.

Appendix A

In the dispersion equation (Eq. (21)), the quantities q, b and k1

are complex:

q2 ¼ k2
1 � k2

0 þ a2
� �

� j � 2 � k0 � a ðA:1Þ

b2 ¼ k2
0 � a2 � k2

2

� �
þ j � 2 � k0 � a ðA:2Þ

k2
1 ¼ k2

0 � a2
� �

� j � x � ql

g
� 2 � k0 � a

� �
ðA:3Þ

where

k1 ¼
x
v1

; k2 ¼
x
v2

; k0 ¼
x
v

For typical values of frequency (of the order of several MHz) and
viscosity (up to 100 Pas) the second terms in (A.1) and (A.2) are
much smaller than the corresponding first components. Similarly,
the first term in (A.3) is much smaller than the second term. Conse-
quently, using these relations we can write:

q ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
1 � k2

0 þ a2
� �r

� j
k0 � affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
1 � k2

0 þ a2
� �r ¼ c þ jd ðA:4Þ

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

k2
0 � a2 � k2

2

� �r
þ j

k0 � affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

0 � a2 � k2
2

� �r ¼ eþ jf ðA:5Þ

k1 ¼
1

2 �
ffiffiffi
2
p �

k2
0 � a2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � ql

g � 2 � k0 � aÞ
q þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx � ql

g � 2 � k0 � aÞ
2

s

þ j � 1
2 �

ffiffiffi
2
p �

k2
0 � a2

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � ql

g � 2 � k0 � a
� �r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x � ql

g � 2 � k0 � a
� �

2

vuut
8>><
>>:

9>>=
>>;

¼ a1 þ jb1 ðA:6Þ

Substituting equations (A.4)–(A.6) to the dispersion equation (Eq.
(21)) and grouping the real and imaginary terms we obtain:

ðy1 � y3 � y2 � y4Þ � ðy5 � y7 þ y6 � y8Þ ¼ 0 ðA:7Þ
ðy1 � y4 � y2 � y3Þ � ðy5 � y8 þ y6 � y7Þ ¼ 0 ðA:8Þ

where

y1 ¼ sinðc � DÞ � coshðd � DÞ ðA:9Þ
y2 ¼ cosðc � DÞ � sinhðd � DÞ ðA:10Þ
y3 ¼ ðl1Þ

2 � ðc � c � d � dÞ �x � g � l2 � ðf � a1 þ e � b1Þ ðA:11Þ
y4 ¼ ðl1Þ

2 � 2 � c � d�x � g � l2 � ðe � a1 � f � b1Þ ðA:12Þ
y5 ¼ cosðc � DÞ � coshðd � DÞ ðA:13Þ
y6 ¼ sinðc � DÞ � sinhðd � DÞ ðA:14Þ
y7 ¼ l2 � l1 � ðe � c � f � dÞ �x � g � l1 � ðb1 � c � d � a1Þ ðA:15Þ
y8 ¼ l2 � l1 � ðf � c þ d � eÞ �x � g � l1 � ða1 � c � b1 � dÞ ðA:16Þ
The dependencies (A.7) and (A.8) can be written in the form:

Aðl1;q1;l2;q2;g;ql;D;x; k0;aÞ ¼ 0 ðA:17Þ
Bðl1;q1;l2;q2;g;ql;D;x; k0;aÞ ¼ 0 ðA:18Þ

This is a system of nonlinear algebraic equations. The unknowns
are: k0 and a.

The parameters are: l1, q1, l2, q2, g, ql, D and x.
Equations (A.17) and (A.18) constitute dispersion relations

describing Love wave propagation in the waveguide loaded on
the surface with a viscous Newtonian liquid.
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