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Abstract  

 

 

The advent of elastic metamaterials at the beginning of the 21st century opened new 

venues and possibilities of existence for new types of acoustic (ultrasonic) waves, 

which were deemed previously impossible. In fact, it was commonly agreed that 

shear horizontal (SH) surface acoustic waves cannot exist on an elastic half-space 

or at the interface between two different elastic half-spaces. However, in this paper 

(inspired by the newly developed elastic metamaterials) we will show that SH surface 

elastic waves can propagate at the interface between two elastic half-spaces, 

provided that one of them is a metamaterial with a negative elastic compliance 

𝑠44(𝜔). In addition, if 𝑠44(𝜔) changes with frequency 𝜔 as the dielectric function 𝜀(𝜔) 

in Drude's model of metals, then the proposed SH ultrasonic waves can be 

considered as acoustic analogues of Surface Plasmon Polariton (SPP) 

electromagnetic waves propagating at the metal-dielectric interface. Due to inherent 

similarities between the proposed SH acoustic waves and SPP electromagnetic 

waves the new results developed in this paper can be readily transferred into the 

SPP domain and vice-versa. The proposed new SH ultrasonic surface waves are 

characterized by a strong subwavelength confinement of energy in the vicinity of the 

guiding interface, thus they can potentially be used in subwavelength acoustic 

imaging, superlensing and/or acoustic sensors with extremely large mass sensitivity.  
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1. Introduction  

 

      Acoustic surface waves that exist in solid waveguides have seemingly very little 

in common with Surface Plasmon Polariton (SPP) electromagnetic waves 

propagating in metal-dielectric waveguides. However, with the advent of elastic 

metamaterials this assertion has to be revisited.  

 

      Indeed, one can argue that the invention of metamaterials was one of the most 

significant events in physics at the turn of the XX and XXI Century [1-2]. In fact, 

metamaterials challenged many tacit assumptions and believes accumulated in 

decades about properties of matter and wave motion herein. Combining basic 

research with a judicious engineering design, researchers devised a large number of 

new materials with unprecedented properties. In the domain of elastic media we 

observed emergence of elastic metamaterials with a negative mass density [3-5], 

anisotropic mass density [6], negative elastic constants [7-8], etc. Not surprisingly, 

these new properties opened possibilities for existence of new types of acoustic 

waves, which were previously considered as impossible. 

 

      Up to date it was commonly agreed that shear horizontal (SH) acoustic surface 

waves cannot exist at the interface between two elastic half-spaces [9]. In the 

submitted manuscript we challenge the above assertion, showing that SH acoustic 

(ultrasonic) surface waves can exist at the interface between two elastic-half-spaces, 

provided that one of them is elastic metamaterial with special properties, i.e., with a 

negative shear elastic compliance.  

 

      Consequently, in this paper we propose (inspired by the newly developed elastic 

metamaterials) a new type of shear horizontal (SH) acoustic surface waves that were 

previously deemed impossible [9], i.e., the waves that can propagate at the interface 

between two elastic half-spaces one of which is a metamaterial with a negative 

elastic compliance 𝑠44(𝜔) < 0. If, in addition, the compliance 𝑠44(𝜔) changes with 

angular frequency 𝜔 as the dielectric function 𝜀(𝜔) in Drude's model of metals, the 

proposed SH acoustic waves can be considered as ultrasonic analogues of Surface 

Plasmon Polariton (SPP) electromagnetic waves propagating at the metal-dielectric 

interface. 

 

      As a result, special attention was paid in this paper to similarities between the 

new proposed SH elastic surface waves and the electromagnetic surface waves of 

the surface plasmon polariton (SPP) type, propagating at a dielectric-metal interface 

[10-12]. In fact, SPP surface waves are transverse magnetic (TM) electromagnetic 

modes with only one transverse component, namely the magnetic field 𝐻3 that is 

analogue of the SH mechanical displacement 𝑢3 of the new proposed SH acoustic 

surface wave. It is noteworthy that both types of waves share one crucial property, 

i.e., very strong subwavelength decay in the transverse direction away from the 

guiding interface 𝑥2 = 0 (see Fig.1).  
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      Due to strong formal similarities between SPP electromagnetic surface waves 

and the new proposed SH elastic surface waves, most of the results obtained in this 

paper can be transferred directly into the SPP domain (see Table 1 in Section 4) and 

vice-versa. Many new interesting phenomena observed in the SPP domain, such as 

trapping of light (zero group velocity) [13], transformational optics systems [14] or 

nonreciprocal and topological waveguides [15] may be transferred into the domain of 

elastic metamaterial waveguides, using to this end the new SH acoustic surface 

waves proposed in this paper. Therefore, the proposed new SH acoustic surface 

waves open new possibilities to control wave phenomena in elastic solids. 

 

      The new ultrasonic wave has the character of a surface wave because it is an 

evanescent wave, (i.e. it decays exponentially) in the direction of the 𝑥2 axis, 

perpendicular to the interface (𝑥2 = 0) and perpendicular to the direction of 

propagation 𝑥1.  

 

      The proposed new SH acoustic surface waves can have deeply subwavelength 

penetration depth, in both half-spaces of the waveguide, therefore they offer a 

potential for applications in subwavelength acoustic imaging, superlensing and/or 

acoustic sensors with extremely large sensitivity, analogously to their SPP 

counterparts in electromagnetism. These are very attractive properties of the newly 

discovered ultrasonic waves.  

 

      The frequency range, in which the new SH acoustic surface wave can propagate 

covers practically the range from several kHz to several MHz. The maximum wave 

frequency 𝜔𝑠𝑝 2𝜋⁄  depends on the resonant frequency of local resonators 𝜔𝑝 and is 

given by the formula 24. For example, when an exemplary waveguide structure from 

Fig.1 consists of 1) the metamaterial upper half-space (𝑥2 ≤ 0) based on ST-Quartz 

with embedded local resonators with a selected resonant frequency 𝜔𝑝 2𝜋⁄ = 1 𝑀𝐻𝑧, 

and 2) conventional PMMA elastic lower half space (𝑥2 ≥ 0), the maximum wave 

frequency equals approximately to 𝜔𝑠𝑝 2𝜋⁄ = 143 𝑘𝐻𝑧 (according to the formula 24).  

 

      The application of the proposed new ultrasonic wave allows to achieve very high 

resolution (of the order of micrometers) using relatively low frequencies (of the order 

of a few MHz). So far, using conventional ultrasonic waves and imaging systems a 

similar resolution could be achieved using frequencies of the order of 1 GHz, what is 

very difficult.  

 

      The exciting properties of newly discovered ultrasonic waves are that they can 

slow down to zero (𝜔𝑠𝑝 and 𝜔𝑠𝑝 → 0), when the wave frequency tends to the 

frequency 𝜔𝑠𝑝. This phenomenon generates concentration of energy near the 

interface what can be of crucial importance in subwavelength acoustic imaging, 
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acoustic energy harvesting as well as in miniaturized modern acoustic devices at the 

micro and nano-scale.  

 

      A number of analytical equations developed in this paper are new and original. 

As a result, they can provide fresh physical insight into the wave phenomena 

occurring in both domains, namely SPP electromagnetic waves and SH elastic 

surface waves. For example, Eqs. 30, 33, 36 and 37 that relate complex power flow 

with penetration depths in both half-spaces of the waveguide, were to the best of our 

knowledge not yet published in the literature. Table 1 in Section 4 provides 

corresponding field quantities in both analyzed domains.  

 

      The layout of this paper is as follows. Section 2.1 introduces the geometry and 

material parameters of two half-spaces forming the metamaterial waveguide. Section 

2.2 describes properties of the metamaterial half-space with a negative elastic 

compliance 𝑠44
(1)(𝜔) < 0. Section 2.3 contains an acoustic model of a metamaterial, 

whose elastic compliance 𝑠44(𝜔) obeys the Drude relation. Mechanical displacement 

𝑢3 and shear stresses 𝜏13, 𝜏23 are subject of Section 3.1. Boundary conditions and 

the dispersion equation of the new SH waves is presented in Section 3.2. The 

formula for the wavenumber 𝑘(𝜔) was derived in Section 3.3. The formulas for the 

phase 𝑣𝑝(𝜔) and group 𝑣𝑔(𝜔) velocities were developed, in Sections 3.4 and 3.5, 

respectively. The equations for the penetration depth in both half-spaces are given in 

Section 3.6. The active power 𝑃1 flow of, in the direction of propagation 𝑥1, was 

determined in Section 3.7. The reactive power 𝑃2 flow, in the transverse direction 𝑥2 

was analyzed in Section 3.8. The correspondence between SPP electromagnetic 

surface waves and the proposed new SH acoustic surface waves is outlined in 

Section 4. The results of numerical calculations and the corresponding figures are 

presented in Section 5. The discussion and conclusions are the subject of Sections 6 

and 7, respectively.  
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2. Physical model  

 

2.1 Geometry and material parameters of the waveguide  

 

      The geometry of the waveguide supporting new SH elastic surface waves is 

sketched in Fig.1. The waveguide consists of two semi-infinite elastic half-spaces, 

one of which is a conventional elastic material (𝑥2 ≥ 0) and the second an elastic 

metamaterial (𝑥2 < 0) with a negative elastic compliance 𝑠44
(1)(𝜔) < 0, which is a 

function of angular frequency 𝜔. By contrast, the densities (𝜌1, 𝜌2) > 0 in both half-

spaces as well as the elastic compliance 𝑠44
(2)

> 0 in the conventional elastic material 

are positive and frequency independent (see Fig.1). 

     

 

Fig.1 Cross-section of the waveguide supporting the newly proposed SH elastic 

surface waves, propagating in the direction 𝑥1, with exponentially decaying 

fields in the transverse direction 𝑥2. The conventional elastic half-space (𝑥2 ≥

0) is rigidly bonded to the metamaterial elastic half-space (𝑥2 < 0) at the 

interface 𝑥2 = 0. Mechanical displacement 𝑢3 of the new SH elastic surface 

waves is polarized along 𝑥3  

 

      Two elastic half-spaces, rigidly bonded at the interface 𝑥2 = 0, are uniform in the 

direction 𝑥3, therefore all field quantities of the new SH elastic surface wave will vary 

only along the transverse direction 𝑥2, i.e., as a function of distance from the guiding 

interface 𝑥2 = 0. It is assumed that both half-spaces of the waveguide are linear and 

lossless.  
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2.2 Elastic compliance 𝑠44
(1)(𝜔) in the metamaterial half-space (𝑥2 < 0)  

 

      The important assumption made throughout this paper is about the elastic 

compliance 𝑠44
(1)(𝜔) in the metamaterial half-space (𝑥2 < 0). Namely, it is assumed 

that 𝑠44
(1)(𝜔), as a function of angular frequency 𝜔, is given explicitly by the following 

formula:  

 

𝑠44
(1)

(𝜔) = 𝑠0 ∙ (1 −
𝜔𝑝

2

𝜔2
) (1) 

 

where: 𝜔𝑝 is the angular frequency of the local mechanical resonances of the 

metamaterial and 𝑠0 is its reference elastic compliance for 𝜔 → ∞. 

 

      It is not difficult to notice that the elastic compliance 𝑠44
(1)

(𝜔) given by Eq.1, is 

formally identical to the dielectric function 𝜀(𝜔) in Drude's model of metals [16], in 

which the angular frequency 𝜔𝑝 is named the angular frequency of bulk plasmon 

resonance [17].  

 

      Similarly, the density 𝜌1 of the metamaterial half-space (𝑥2 < 0) corresponds to 

the magnetic permeability 𝜇 in Drude's model of metals. 

 

      The second elastic half-space (𝑥2 < 0) is a conventional elastic material with a 

positive compliance 𝑠44
(2)

> 0 and density 𝜌2 > 0 that are both frequency independent. 

 

2.3 The Drude–like behavior of mechanical systems  

 

      In order to justify the existence of elastic bodies whose elastic properties show 

the Drude type dependence on the angular frequency 𝜔, we will use 1) a set of 

electromechanical analogies and 2) the similarity of the new ultrasonic waves of the 

SH type to electromagnetic waves of the Surface Plasmon Polariton (SPP) type, 

which propagate at the metal - dielectric interface.  

      The correspondence of the new SH ultrasonic waves to electromagnetic waves 

of the (SPP) type is due to the fact that they share the common mathematical model. 

Namely, the equations of motion (second Newton’s law) describing the behavior of 

an elastic continuum (with parameters 𝑠44 and 𝜌) are analogous to Maxwell's 

equations describing the behavior of a continuous medium with parameters 𝜀 and 𝜇.  

      This is the origin of the analogy between dielectric permeability and magnetic 

permeability and shear modulus and density: 𝜀 ⇔ 𝑠44 and 𝜇 ⇔ 𝜌, see Table 1 on 

page 21, which we can observe by analyzing the properties of mechanical surface 

SH waves and electromagnetic surface waves of the SPP type.  
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      Therefore, the relationships that we prove in the electromagnetic domain for 𝜀 

and 𝜇 can be transferred to the relationships that are valid for 𝑠44 and 𝜌 in the 

mechanical domain.  

      A one-dimensional mechanical model, whose elastic properties can be described 

by Drude's dependence on angular frequency 𝜔, can be shown in Fig.2.  

 

 

Fig.2. The spring-mass model of a mechanical resonator whose effective shear 

elastic constant 𝐶𝑒𝑓𝑓(𝜔) varies on the angular frequency 𝜔 according to Drude's 

relation. 𝐹(𝜔) is the mechanical force, 𝑞(𝜔) is the mechanical displacement and 

𝑣(𝜔) = 𝑗𝜔𝑞(𝜔) is the acoustic velocity.  

 

      Figure 2. shows a one-dimensional mechanical resonator performing shear 

vibrations. The elementary resonator in Fig. 2 consists of an elastic spring with a 

compliance 𝐶0 connected in series with mass 𝑚. The mechanical equivalent diagram 

and the electrical equivalent diagram of the system in Fig. 2 can be presented as 

follows, see Fig. 3a,b:  

 

a)                                                                                 b)  

Fig.3 a) Mechanical equivalent circuit of the system from Fig. 2 and b) electrical 

equivalent circuit of the mechanical system from Fig.2. Here, 𝑣(𝜔) the acoustic 

velocity, 𝐹(𝜔) is the mechanical force, and 𝐶0 is the elastic compliance of the spring.  
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      The mechanical equivalent circuit in Fig. 3a can be analyzed in a similar way as 

the electrical equivalent circuit in Fig. 3b. The properties of the equivalent 

mechanical system from Fig. 3a will be investigated in the frequency 𝜔 domain.  

      Fig. 3a shows that the mechanical system in Fig. 2 is characterized by the 

following mechanical admittance 𝑌(𝜔):  

 

                            𝑌(𝜔) =
𝑣(𝜔)

𝐹(𝜔)
= 𝑗𝜔𝐶0 +

1

𝑗𝜔𝑚
= 𝑗𝜔𝐶0 (1 −

𝜔0
2

𝜔2)                               (2)  

 

where: 𝜔0 = 1/√𝑚𝐶0 is the resonant frequency of the mechanical resonator.  

 

      As can be seen from Eq.2, the mechanical resonator shown in Fig.2 can be 

replaced by the resultant shear compliance 𝐶𝑒𝑓𝑓(𝜔) represented by the spring, see 

Fig.4.  

 

 

Fig.4. The equivalent elastic shear spring compliance 𝐶𝑒𝑓𝑓(𝜔) that represents the 

overall mechanical behavior of the mechanical resonator from Fig.2.  

 

The equivalent elastic shear spring compliance 𝐶𝑒𝑓𝑓(𝜔) from Fig.4 is given by the 

following analytical formula:  

 

                                       𝐶𝑒𝑓𝑓(𝜔) = 𝐶0 (1 −
𝜔0

2

𝜔2
)                                           (3)  

 

      As can be seen from Eq.3, the frequency characteristic of the equivalent 

compliance 𝐶𝑒𝑓𝑓(𝜔) is similar to the frequency dependence of the shear elastic 

compliance 𝑠44(𝜔) described by Eq.1 on page 7, as well as to the dielectric constant 

𝜀(𝜔) described by the Drude formula in electromagnetism (optics).  

      The effective shear compliance 𝐶𝑒𝑓𝑓(𝜔) is negative over a wide frequency range 

(0 < 𝜔 < 𝜔0) below the resonant frequency 𝜔0 = 1/√𝑚𝐶0.  

The frequency 𝜔0 corresponds to the plasma frequency of electrons in metals that 

are used in dielectric-metal layered waveguides in which Surface Plasmon Polariton 

(SPP) waves propagate (in the case of electromagnetism and optics).  
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      This Drude-like behavior of the mechanical system from Fig.2 was the motivation 

to search for new ultrasonic surface SH waves, analogous to Surface Plasmon 

Polariton (SPP) electromagnetic waves, that propagate in elastic layered 

metamaterial waveguides, where the elastic shear compliance can exhibit a Drude-

like dependence on angular frequency 𝜔. This elementary cell (local oscillator) from 

Fig.2 can constitute the basis (microstructure) for the design and construction of 

metamaterials with the desired elastic properties.  

      As a unit cell that can be used as a local resonator, we choose the following 

structure, see Fig.5:  

Fig.5. Practical realization of a local resonator performing shear vibrations.  

 

      The local resonator consists of a sphere of mass 𝑚 mounted on 2 

microcantilevers, which act as a spring with an effective compliance 𝐶0/2. 

Microcatilevers are bonded to the host material. Elastic compliance of the 

microcantilever treated as a spring can be expressed as: 𝐶0 = 4𝐿3 𝐸𝑤𝑡3⁄  ; where: 𝐿 = 

length, 𝑤 = width, 𝑡 = height and 𝑌 = Young’s modulus. The resonator performs 

shear oscillations in the direction perpendicular to Fig. 5 with the frequency 𝜔0 =

√2 𝑚𝐶0⁄ .  

      The vibrational properties of local resonators of this type are revealed in the SH-

type transverse shear wave field propagating in the bulk medium in which the set of 

these elementary oscillators, which perform shear vibrations, has been embedded.  

      The mean mechanical energy stored in the mechanical system represented by 

the mechanical equivalent diagram (mechanical two-port) in Fig. 3a equals:  

 

                                         𝑊𝑀(𝜔) =
1

4
(1 +

𝜔0
2

𝜔2
) ∙ 𝐶0 ∙ |𝐹|2                               (4)  

 

Thus, from Equation 4, we can conclude that the mean mechanical energy density in 

a corresponding continuous elastic medium is equal to:  

 

                                        𝑤𝑀(𝜔) =
1

4
(1 +

𝜔0
2

𝜔2) 𝑠0 ∙ |𝜏23|2                               (5)  

 

where: 𝑠0 is the elastic compliance of the corresponding continuous elastic material, 

𝜏23 is the shear stress equal to: 𝜏23 = 𝐹 𝐴⁄ , 𝐹 is the shear force acting on the 

appropriate surface 𝐴 of the local oscillator, see Fig. 6:  
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Fig.6. An elementary resonator performing shear vibrations. The shear force 𝐹 is 

acting on the surface 𝐴 of the resonator.  

 

Therefore, the mechanical energy stored in the reference volume 𝑉 in the elastic 

metamaterial is:  

 

               
1

4
(1 +

𝜔0
2

𝜔2
) (𝑠0)𝑒𝑓𝑓|𝜏23|2 ∙ 𝑉 =

1

4
(1 +

𝜔0
2

𝜔2
) ∙ 𝑛 ∙ 𝐶0 ∙ |𝐹|2                      (6)  

 

where: 𝑛 is the number of local resonators contained in the reference volume 𝑉. The 

coefficient (𝑠0)𝑒𝑓𝑓 in Eq.6  represents the averaged value of the elastic compliance of 

the resultant elastic metamaterial.  

 

      The relation for energy density in electromagnetic continuous media, whose 

material parameters exhibit a dependence on angular frequency 𝜔, was developed 

by Ginzburg in [18]. From the analogy between mechanical and electromagnetic 

waves (see Table 1, lines No 4 and 5, i.e., the correspondence between 𝜀(𝜔) and 

𝑠44(𝜔) ), we can write [18]:  

 

                                     
𝑑

𝑑𝜔
(𝜔

𝑠44(𝜔)

(𝑠0)𝑒𝑓𝑓) = (1 +
𝜔0

2

𝜔2)                                         (7)  

 

Performing integration on 𝜔 of both sides of Eq.7, we arrive at the following formula:  

 

                                          
𝑠44(𝜔)

(𝑠0)𝑒𝑓𝑓
= (1 −

𝜔0
2

𝜔2
)                                               (8)  

 

Equation 8 is the Drude’s relation describing the elastic compliance 𝑠44(𝜔) of the 

resulting elastic metamaterial as a function of angular frequency 𝜔.  

 

Knowing that: |𝜏23| = |𝐹| 𝐴⁄ , where 𝐴 is the surface of the elementary resonator upon 

which the force 𝐹 is acting and comparing left and right sides of Eq. 6, we can write:  

 

                                      (𝑠0)𝑒𝑓𝑓 =
𝑛∙𝐶0|𝐹|2

|𝜏23|2∙𝑉
=

𝑛∙𝐶0∙𝐴2

𝑉
                                       (9)  
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      Based on the performed analysis, an examplary model of an elastic metamaterial 

whose shear elastic compliance 𝑠44(𝜔), as a function of angular frequency 𝜔, varies 

according to the Drude relation can be presented as follows, see Fig. 7.  

 

 

Fig. 7. A model of an elastic metamaterial with Drude-like dependence of elastic 

compliance 𝑠44(𝜔) on angular frequency 𝜔. A set of 𝑛 local mechanical oscillators is 

embedded into the host material in the reference volume 𝑉. The inset shows details 

of an elementary (local) resonator.  
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3. Mathematical model  

 

3.1 Mechanical displacement 𝑢3
(𝑖)(𝑥2) and stresses 𝜏23

(𝑖)(𝑥2), 𝜏13
(𝑖)(𝑥2)  

 

      Since new SH elastic surface waves are time-harmonic, propagate in the 

direction 𝑥1 and are uniform along the transverse direction 𝑥3, their mechanical 

displacement  𝑢3
(𝑖)

, in both half-spaces (𝑖 = 1,2) shown in Fig.1, will be sought in the 

following generic form 

 

𝑢3
(𝑖)

= 𝑢3
(𝑖)(𝑥2)𝑒𝑥𝑝[𝑗(𝑘 ∙ 𝑥1 − 𝜔𝑡)] (10) 

 

where 𝑢3
(𝑖)(𝑥2) expresses variations of the mechanical displacement in the 

transverse direction 𝑥2, 𝑘 is the wavenumber of the new SH elastic surface wave and 

𝜔 its angular frequency. 

 

      The mechanical displacement 𝑢3
(𝑖)

 in both half-spaces of the waveguide is 

governed by the wave equation, resulting from the second Newton's law, which with 

the help of Eq.10 reduces to the second order ordinary differential equation of the 

Helmholtz type [19]  

 

[
𝑑2

𝑑𝑥2
+ 𝑘𝑖

2] ∙ 𝑢3
(𝑖)(𝑥2) = 𝑘2 ∙ 𝑢3

(𝑖)(𝑥2) 

 

(11) 

where 𝑘𝑖 = 𝜔 𝑣𝑖⁄  is the wavenumber of SH bulk waves in both elastic half-spaces 

number  𝑖 = 1, 2. In the conventional elastic half-space (𝑖 = 2) the wavenumber 𝑘2
2 =

𝜔2𝑠44
(2)

𝜌2 is positive and in the metamaterial half-space (𝑖 = 1) the wavenumber 𝑘1
2 =

−𝜔2|𝑠44
(1)

|𝜌1 is always negative in the angular frequency range 0 < 𝜔 ≤ 𝜔𝑝.  

 

      Since the mechanical displacement 𝑢3
(𝑖)(𝑥2) of the new SH elastic surface wave 

must vanish at large distances from the guiding interface 𝑥2 = 0, namely for 𝑥2 →

±∞, the solution of the Helmholtz Eq.11 will be sought in the following form  

 

𝑢3
(𝑖)(𝑥2) = 𝐶𝑖𝑒

±𝑞𝑖𝑥2 (12)  

 

where 𝐶𝑖 (𝑖 = 1,2) are arbitrary amplitude coefficients and the transverse wave 

numbers 𝑞𝑖 are real (waveguide is lossless) and according to the Helmoltz Eq.11 are 

given by 𝑞𝑖 = √(𝑘2 − 𝑘𝑖
2), where 𝑘𝑖 = 1 √𝑠44

(𝑖)
𝜌𝑖⁄  are wavenumbers of bulk SH waves 

in the metamaterial half-space 𝑥2 < 0 (𝑖 = 1) and conventional elastic half-space 

𝑥2 ≥ 0 (𝑖 = 2).  
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      In the following of this paper we will use two shear stresses of the new SH elastic 

surface wave, namely 𝜏23
(𝑖)

 and 𝜏13
(𝑖)

 that are defined, respectively, as:  

𝜏23
(𝑖)

= (1 𝑠44
(𝑖)⁄ ) 𝜕𝑢3

(𝑖)
𝜕𝑥2⁄  and 𝜏13

(𝑖)
= (1 𝑠44

(𝑖)⁄ ) 𝜕𝑢3
(𝑖)

𝜕𝑥1⁄ .  

 

Consequently, we can write the following formulas: 

𝑢3
(𝑖)

(𝑥2) = 𝐶𝑖 ∙ 𝑒𝑥𝑝(±𝑞𝑖𝑥2) (13) 

𝜏23
(𝑖)

(𝑥2) =
1

𝑠44
(𝑖)

𝐶𝑖 ∙ 𝑞𝑖 ∙ 𝑒𝑥𝑝(±𝑞𝑖𝑥2) (14) 

𝜏13
(𝑖)

(𝑥2) =
1

𝑠44
(𝑖)

𝐶𝑖 ∙ 𝑗𝑘 ∙ 𝑒𝑥𝑝(±𝑞𝑖𝑥2) (15) 

𝑞𝑖 = √(𝑘2 − 𝑘𝑖
2) (16) 

 

where the index 𝑖 = 1,2. 

 

In order to provide an exponential decay of 𝑢3
(𝑖)(𝑥2), 𝜏23

(𝑖)
(𝑥2) and 𝜏13

(𝑖)
(𝑥2) the 

transverse wavenumber 𝑞𝑖 in Eqs 13-16 have to be preceded by sign − in the 

convention elastic half-space  (𝑥2 ≥ 0) and by sign + in the metamaterial half-space 

(𝑥2 < 0), since 𝑞𝑖 (𝑖 = 1,2) in Eqs. 13-16 are real and positive.  

 

3.2 Boundary conditions and dispersion equation  

 

      From physical considerations it is obvious that the mechanical displacement 

𝑢3
(𝑖)

(𝑥2) and the shear stress 𝜏23
(𝑖)

(𝑥2) have to be continuous at the interface 𝑥2 = 0, 

namely:  

 

𝑢3
(1)

(𝑥2 = 0) = 𝑢3
(2)

(𝑥2 = 0) (17) 

𝜏23
(1)

(𝑥2 = 0) = 𝜏23
(2)

(𝑥2 = 0) (18) 

 

      Substituting Eqs. 13 and 14 into boundary conditions, Eqs. 17 and 18, one 

obtains two linear homogeneous algebraic equations for two unknown amplitude 

coefficients 𝐶1 and 𝐶2, namely:  

𝐶1 = 𝐶2  (19) 

𝐶1

𝑞1

𝑠44
(1)(𝜔)

= −𝐶2  
𝑞2

𝑠44
(2)

 (20) 
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      Combining Eqs. 19 and 20, we get the following dispersion equation for the new 

SH elastic surface waves:  

 
𝑞1

−𝑠44
(1)(𝜔)

=
𝑞2

𝑠44
(2)

 (21)  

 

The sign "−" before the compliance  −𝑠44
(1)(𝜔) plays a crucial role in the analysis of 

new SH elastic surface waves, since it implies that if the transverse wavenumbers 𝑞1 

and 𝑞2 are positive, the elastic compliances 𝑠44
(1)(𝜔), 𝑠44

(2)
 must be of the opposite sign 

𝑠44
(1)(𝜔) ∙ 𝑠44

(2)
< 0. Consequently, if the elastic compliance 𝑠44

(1)(𝜔) (see Eq.1) in the 

metamaterial half-space is negative for 𝜔 < 𝜔𝑝, the compliance 𝑠44
(2)

 have to be 

positive (see Fig.1).  

 

      Since 𝐶1 = 𝐶2 (see Eq.19) in the following of this paper we will use only one 

amplitude coefficient, denoted as  𝐶 = 𝐶1 = 𝐶2. 

 

3.3 Wavenumber 𝑘(𝜔)  

 

      Substituting Eq.16, for transverse wavenumbers 𝑞1 and 𝑞2, in the dispersion 

relation Eq.21 one obtains the following formula for the wavenumber 𝑘(𝜔) of the new 

SH elastic surface wave  

 

𝑘(𝜔) = 𝑘2√
𝑠44

(1)
(𝜔)

𝑠44
(1)(𝜔) + 𝑠44

(2)
 √

𝑠44
(2) 𝜌1

𝜌2
− 𝑠44

(1)(𝜔)

𝑠44
(2)

− 𝑠44
(1)(𝜔)

 (22)  

 

where: the wavenumber of bulk SH waves in the conventional elastic half-space 𝑘2 =

𝜔√𝑠44
(2)

𝜌2. 

 

      Since the wavenumber 𝑘(𝜔) of the new SH elastic surface wave has to be real 

and positive, Eq.22 imposes the following two necessary conditions on 𝑠44
(1)(𝜔) and 

𝑠44
(2)

 

 

                                     (𝑠44
(1)(𝜔) < 0) 𝑎𝑛𝑑 (𝑠44

(1)(𝜔) + 𝑠44
(2)

) < 0                               (23)  

 

The first condition requires that 𝜔 < 𝜔𝑝 and the second gives rise to 𝜔 < 𝜔𝑠𝑝, where 

the cut-off angular frequency 𝜔𝑠𝑝 and the angular frequency of local resonances 𝜔𝑝 

are related by:  
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                                        𝜔𝑠𝑝 = 𝜔𝑝 √𝑠44
(2)

𝑠0
+ 1⁄                                                            (24)  

 

      Since 𝜔𝑝 is always higher than 𝜔𝑠𝑝 (𝜔𝑝 > 𝜔𝑠𝑝), the two conditions given by Eq.23 

imply that the frequency 𝜔 of the new SH elastic surface wave has to be limited to 

the range 0 < 𝜔 < 𝜔𝑠𝑝. 

 

      In the context of the SPP electromagnetic surface waves the angular frequency 

𝜔𝑠𝑝 is called the surface plasmon resonance frequency [17].  

 

3.4  Phase velocity 𝑣𝑝(𝜔)  

 

      Since by definition 𝑘(𝜔) = 𝜔 𝑣𝑝⁄ (𝜔), the analytical formula for the phase velocity 

𝑣𝑝(𝜔) of new SH elastic surface waves results immediately from Eq.22:  

 

𝑣𝑝(𝜔) = 𝑣2√
𝑠44

(1)(𝜔) + 𝑠44
(2)

𝑠44
(1)(𝜔)

 √
𝑠44

(2)
− 𝑠44

(1)(𝜔)

𝑠44
(2) 𝜌1

𝜌2
− 𝑠44

(1)(𝜔)
  (25)  

 

where: 𝑣2 = 1 √𝑠44
(2)

𝜌2⁄  is the phase velocity of bulk SH waves in the conventional 

elastic half-space.  

 

3.5 Group velocity 𝑣𝑔(𝜔)  

 

      Differentiation of Eq.22 for the wavenumber 𝑘(𝜔), with respect to the angular 

frequency 𝜔, leads to the following formula for the group velocity 𝑣𝑔(𝜔) = 𝑑𝜔 𝑑𝑘⁄  of 

the new SH surface wave:  

 

𝑣𝑔(𝜔)

𝑣2

𝑣𝑝(𝜔)

𝑣2
=  (26) 

[[𝑠44
(2)

]
2

− [𝑠44
(1)(𝜔)]

2
]

2

𝑠44
(1)(𝜔) [

𝜌1
𝜌2

𝑠44
(2)

− 𝑠44
(1)(𝜔)] [[𝑠44

(2)
]

2
− [𝑠44

(1)(𝜔)]
2

] +
𝜔
2

𝑑𝑠44
(1)(𝜔)

𝑑𝜔
[
𝜌1
𝜌2

[[𝑠44
(2)

]
2

+ [𝑠44
(1)(𝜔)]

2
] − 2𝑠44

(1)(𝜔)𝑠44
(2)

]

 

 

      Despite its relative complexity, Eq.26 is quite elementary and can be easily 

implemented in numerical calculations.  

 

3.6 Penetration depths 𝛿1(𝜔), 𝛿2(𝜔) in both half-spaces of the waveguide  
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      The penetration depth in t-he metamaterial half-space 𝑥2 < 0 is defined as 

𝛿1(𝜔) = 1 𝑞1(𝜔)⁄ , where the transverse wave number 𝑞1(𝜔) = √𝑘2 − 𝑘1
2 (see Eq.16) 

and 𝑘1
2 = 𝜔2𝑠44

(1)(𝜔)𝜌1. Similarly, in the conventional elastic half-space 𝑥2 ≥ 0 we 

have 𝛿2(𝜔) = 1 𝑞2(𝜔)⁄ , where the transverse wavenumber 𝑞2(𝜔) = √𝑘2 − 𝑘2
2 (see 

Eq.16) and 𝑘2
2 = 𝜔2𝑠44

(2)
𝜌2. 

 

      Consequently, substituting Eq.22 for the wavenumber 𝑘 into Eq.16 for the 

transverse wavenumbers 𝑞1 and 𝑞2 and noting that 𝜆 = 2𝜋 𝑘⁄  one obtains:  

𝛿1(𝜔) =
𝜆

2𝜋
√

𝑠44
(2)

[−𝑠44
(1)(𝜔) + 𝑠44

(2) 𝜌1

𝜌2
]

−𝑠44
(1)(𝜔) [𝑠44

(2)
− 𝑠44

(1)(𝜔)
𝜌1

𝜌2
]
 (27) 

𝛿2(𝜔) =
𝜆

2𝜋
√

−𝑠44
(1)(𝜔) [−𝑠44

(1)(𝜔) + 𝑠44
(2) 𝜌1

𝜌2
]

𝑠44
(2)

[𝑠44
(2)

− 𝑠44
(1)(𝜔)

𝜌1

𝜌2
]

 (28) 

where 𝜆 is the wavelength of the new SH elastic surface wave.  

 

      In general, the ratio of the penetration depths 𝛿1(𝜔), 𝛿2(𝜔) is expressed by the 

dispersion equation (Eq.21), i.e., 𝛿2(𝜔) 𝛿1(𝜔)⁄ = −𝑠44
(1)(𝜔) 𝑠44

(2)
⁄  that is independent 

on 𝜌1 𝜌2⁄ . On the other hand, by virtue of Eqs. 27 and 28 the product of the 

normalized penetration depths equals:  

 

𝛿1(𝜔)

𝜆
∙

𝛿2(𝜔)

𝜆
= (

1

2𝜋
)

2

 
−𝑠44

(1)(𝜔) + 𝑠44
(2) 𝜌1

𝜌2

𝑠44
(2)

− 𝑠44
(1)(𝜔)

𝜌1

𝜌2

    (29)  

 

However, if the density in both half-spaces of the waveguide is the same (𝜌1 = 𝜌2) 

then Eq. 29 reduces to  

 

𝛿1(𝜔)

𝜆
∙

𝛿2(𝜔)

𝜆
=   (

1

2𝜋
)

2

 (30)  

 

      Thus, if the density in both half-spaces of the waveguide is identical (𝜌1 = 𝜌2) the 

product of the normalized penetration depths 𝛿1(𝜔)𝛿2(𝜔) 𝜆2⁄  is independent of 

angular frequency 𝜔 and material constants of the waveguide and equals (1 2𝜋⁄ )2 ≈

0.025. In other words, if 𝜌1 = 𝜌2 both normalized penetration depths 𝛿1(𝜔) 𝜆⁄ , 

𝛿2(𝜔) 𝜆⁄  are inversely proportional. As a result, if 𝛿1(𝜔) 𝜆⁄  increases then 𝛿2(𝜔) 𝜆⁄  

decreases accordingly to Eq.30 and vice-versa. Simultaneously, if the angular 
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frequency 𝜔 → 𝜔𝑠𝑝 then both 𝛿1(𝜔) 𝜆⁄  and 𝛿2(𝜔) 𝜆⁄  are subwavelength and tend to 

the same value 1 2𝜋⁄  (see Figs 11 and 12).  

 

3.7 Active power flow 𝑃1
(1)(𝜔), 𝑃1

(2)(𝜔) in the direction of propagation 𝑥1  

 

      The complex Poynting vector 𝑃1
(𝑖)(𝑥2), in the direction of propagation 𝑥1, of new 

SH elastic surface waves can be expressed as 𝑃1
(𝑖)(𝑥2) = −

1

2
[𝜏13

(𝑖)(𝑥2) ∙

(−𝑗𝜔𝑢3
(𝑖)(𝑥2) )

∗

], where 𝑢3
(𝑖)(𝑥2) is the mechanical displacement (Eq.5) and 𝜏13

(𝑖)(𝑥2) is 

the mechanical stress (Eq.15), where 𝑖 = 1,2.  

 

      Similarly, the complex power flow (per unit length along the axis 𝑥3) in the 

metamaterial half-space (𝑥2 < 0) is defined as 𝑃1
(1)(𝜔) = ∫ 𝑃1

(1)(𝑥2)𝑑𝑥2
0

−∞
 (see Fig.1) 

and in the conventional elastic half-space (𝑥2 ≥ 0) by 𝑃1
(2)(𝜔) = ∫ 𝑃1

(2)(𝑥2)𝑑𝑥2
∞

0
.  

      Consequently, using Eqs. 13 and 15 it can be shown that the complex power 

flows 𝑃1
(1)(𝜔) and 𝑃1

(2)(𝜔) in both half-spaces of the waveguide are given by:  

𝑃1
(1)(𝜔) = −

1

4
|𝐶|2

𝑘(𝜔)𝜔

−𝑠44
(1)(𝜔)𝑞1(𝜔)

 (31) 

𝑃1
(2)(𝜔) =

1

4
|𝐶|2

𝑘(𝜔)𝜔

𝑠44
(2)

𝑞2(𝜔)
 (32) 

 

where 𝐶 is an arbitrary amplitude coefficient.  

 

      It should be noticed that all field variables entering Eqs. 31, 32 are real. 

Therefore, the power flows 𝑃1
(1)(𝜔) and 𝑃1

(2)(𝜔) in both half-spaces of the waveguide 

are active. In other words, new SH elastic surface waves can transfer effectively the 

active power along the guiding interface 𝑥2 = 0 in the direction of propagation 𝑥1. 

 

      Employing the dispersion Eq. 21 in conjunction with Eqs. 31, 32 the ratio of the 

active powers flows 𝑃1
(1)(𝜔) 𝑃1

(2)(𝜔)⁄  in both half-spaces of the waveguide is given by 

 

𝑃1
(1)(𝜔)

𝑃1
(2)(𝜔)

=
𝑠44

(2)

𝑠44
(1)(𝜔)

𝑞2(𝜔)

𝑞1(𝜔)
= − [

𝛿1(𝜔)

𝛿2(𝜔)
]

2

 (33)  

 

      Note that the ratio of the active power flows in both half-spaces is always 

negative, since 𝑠44
(1)(𝜔) and 𝑠44

(2)
 are of the opposite sign and the transverse 

wavenumbers are real and positive 𝑞1(𝜔),  𝑞2(𝜔) > 0. Consequently, 𝑃1
(1)(𝜔) and 

𝑃1
(2)(𝜔) propagate in opposite directions along axis 𝑥1. 
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3.8 Reactive power flow 𝑃2
(1)(𝜔), 𝑃2

(2)(𝜔) in the transverse direction 𝑥2  

 

      The complex Poynting vector 𝑃2
(𝑖)(𝑥2), in the transverse direction 𝑥2, of new SH 

elastic surface waves can be expressed as 𝑃2
(𝑖)(𝑥2) = −

1

2
[𝜏23

(𝑖)(𝑥2) ∙ (−𝑗𝜔𝑢3
(𝑖)(𝑥2) )

∗

], 

where 𝑢3
(𝑖)(𝑥2) is the mechanical displacement (Eq.13) and 𝜏23

(𝑖)(𝑥2) is the mechanical 

stress (Eq.14), where 𝑖 = 1,2.  

 

      Similarly, the complex power flow (per unit length along the axis 𝑥3) in the 

metamaterial half-space (𝑥2 < 0) is defined as 𝑃2
(1)(𝜔) = ∫ 𝑃2

(1)(𝑥2)𝑑𝑥2
0

−∞
 (see Fig.1)  

and in the conventional elastic half-space (𝑥2 ≥ 0) by 𝑃2
(2)(𝜔) = ∫ 𝑃2

(2)(𝑥2)𝑑𝑥2
∞

0
.  

 

      Consequently, using Eqs. 13 and 14 it can be shown that the complex power 

flow 𝑃2
(1)(𝜔) and 𝑃2

(2)(𝜔) in both half-spaces are given by:  

 

𝑃2
(1)(𝜔) = +𝑗

𝜔

4
|𝐶|2

1

−𝑠44
(1)(𝜔)

 (34) 

𝑃2
(2)(𝜔) = +𝑗

𝜔

4
|𝐶|2

1

𝑠44
(2)

 (35) 

      Thus, if 𝜔 → 0 then 𝑃2
(1)(𝜔) and 𝑃2

(2)(𝜔) both tend to zero. On the other hand, if 

𝜔 → 𝜔𝑠𝑝 then 𝑃2
(2)(𝜔) and 𝑃2

(1)(𝜔) tend to the same value, namely 𝑗(𝜔𝑠𝑝 4⁄ )|𝐶|2 𝑠44
(2)

⁄ .  

 

      Since the elastic compliance 𝑠44
(1)(𝜔) is negative, in the frequency range 0 < 𝜔 <

𝜔𝑠𝑝, the reactive power flows 𝑃2
(1)(𝜔), 𝑃2

(2)(𝜔), in both half-spaces, are both positive 

(+) and correspond to the inductive type of the reactive power, in analogy to SPP 

electromagnetic waves.  

      Using Eq.1 together with Eqs. 34 and 35, the ratio of the reactive power flows in 

both half-spaces can be written as:  

 

𝑃2
(1)(𝜔)

𝑃2
(2)(𝜔)

= −
𝑠44

(2)

𝑠44
(1)(𝜔)

=
𝛿1(𝜔)

𝛿2(𝜔)
 (36)  

 

      Comparing Eqs. 33 and 36 one obtains rather unexpected relation between the 

active power flows 𝑃1
(1)(𝜔), 𝑃1

(2)(𝜔) in the direction of propagation 𝑥1 and the reactive 

power flows 𝑃2
(1)(𝜔), 𝑃2

(2)(𝜔) in the transverse direction 𝑥2, namely:  

 

𝑃1
(1)(𝜔)

𝑃1
(2)(𝜔)

= − [
𝑃2

(1)(𝜔)

𝑃2
(2)(𝜔)

]

2

 (37)  
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      Thus, if the ratio of the active power flows 𝑃1
(1)(𝜔) 𝑃1

(2)(𝜔)⁄  increases, say 4 

times, the ratio of the reactive power flow 𝑃2
(1)(𝜔) 𝑃2

(2)(𝜔)⁄  grows only 2 times, etc. In 

other words, repartition of the active power flow (𝑃1
(1)(𝜔), 𝑃1

(2)(𝜔)) between two half-

spaces of the waveguide is much more sensitive to changes in the penetration 

depths 𝛿1(𝜔) 𝜆⁄  and 𝛿2(𝜔) 𝜆⁄  than that of the reactive power flow (𝑃2
(1)(𝜔), 𝑃2

(2)(𝜔)) in 

the transverse direction 𝑥2.  
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4. Correspondence between the SPP electromagnetic waves and the 

proposed new SH elastic surface waves  

 

      As it was stated before, the proposed new SH surface acoustic waves can be 

considered as an elastic analogue of SPP electromagnetic surface waves 

propagating in metal-dielectric interface. In fact, the mathematical models of both 

types of waves exhibit strong similarities. Therefore it will be advantageous to 

identify explicitly the corresponding field variables in both domains, since the results 

obtained in one domain can be directly transferred to the other domain, alleviating 

thereby tedious from scratch derivations of the resulting analytical formulas (see 

Table 1).  

      Some caution however has to be observed, since a number of notions commonly 

used in electromagnetism do not have direct counterparts in the theory of elasticity. 

For example, in the electromagnetic domain one uses very often the notion of the 

relative material constants, such as the relative dielectric permittivity or relative 

magnetic permeability. By contrast, in the theory of elasticity the use of the relative 

material constants was not adopted mainly due to the fact that such a universally 

accepted reference medium as vacuum does not exist. Similarly, the notion of the 

index of refraction, commonly used in electromagnetism, did not gain much 

popularity in the theory of elasticity for the same reason.  

 

Table 1 Correspondence between field variables of SPP electromagnetic waves in 

metal-dielectric waveguides and the proposed new SH elastic surface 

waves in metamaterial waveguides  

 

No 

SPP electromagnetic surface waves in metal-

dielectric waveguides 

New SH elastic surface waves in metamaterial 

waveguides 

Property Implementation Implementation Property 

1 
Longitudinal electric 

field 
𝐸1 𝜏23 

Shear horizontal SH 

mechanical stress 

2 
Transverse electric 

field 
𝐸2 𝜏13 

Shear mechanical 

stress 

3 
transverse magnetic 

field 
𝐻3 𝑣3 = −𝑗𝜔𝑢3 

SH particle velocity 

𝑣3 = 𝜕𝑢3 𝜕𝑡⁄  

4 
Dielectric function in 

metal 
𝜀1(𝜔) 𝑠44

(1)(𝜔) 

Elastic compliance 

in metamaterial half-

space 

5 
Dielectric function in 

dielectric 
𝜀2 𝑠44

(2)
 

Elastic compliance 

in conventional half-

space 

6 
Magnetic permeability 

in metal 
𝜇1 𝜌1 

Density of 

metamaterial half-

space 

7 
Magnetic permeability 

in dielectric 
𝜇2 𝜌2 

Density of 

conventional half-

space 
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8 
Wavenumber for 

𝜇1 𝜇2 = 1⁄  
𝑘(𝜔) = 𝑘2√

𝜀1(𝜔)

𝜀1(𝜔) + 𝜀2
 𝑘(𝜔) = 𝑘2√

𝑠44
(1)(𝜔)

𝑠44
(1)(𝜔) + 𝑠44

(2)
 

Wavenumber for  

𝜌1 𝜌2 = 1⁄  

9 

Phase velocity of SPP 

electromagnetic 

waves 

𝑣𝑝(𝜔) = 𝑣2√
𝜀1(𝜔) + 𝜀2

𝜀1(𝜔)
 𝑣𝑝(𝜔) = 𝑣2√

𝑠44
(1)(𝜔) + 𝑠44

(2)

𝑠44
(1)(𝜔)

 

Phase velocity of 

new SH elastic 

surface waves 

10 

Complex Poynting 

vector in propagation 

direction 𝑥1 

𝑃1 =
1

2
𝐸2 × 𝐻3

∗ 𝑃1 = −
1

2
𝜏13𝑣3

∗ 

Complex Poynting 

vector in 

propagation 

direction 𝑥1 

11 

Complex Poynting 

vector in transverse 

direction  𝑥2 

𝑃2 =
1

2
𝐸1 × 𝐻3

∗ 𝑃2 = −
1

2
𝜏23𝑣3

∗ 

Complex Poynting 

vector in transverse 

direction  𝑥2 

12 

Wave impedance 

𝑍𝑇𝑀 = 𝐸2 𝐻3⁄  , TM 

modes   

𝑍𝑇𝑀
−1

= 𝑣𝑝(𝜔) {
𝜀1(𝜔), 𝑚𝑒𝑡𝑎𝑙

𝜀2, 𝑑𝑖𝑒𝑙𝑒𝑐
 

𝑍𝑠
−1 = 𝑣𝑝(𝜔) {

𝑠44
(1)(𝜔), 𝑚𝑒𝑡𝑎.

𝑠44
(2)

, 𝑐𝑜𝑛𝑣𝑒𝑛.
 

Wave impedance 

𝑍𝑠 = − 𝜏13 𝑣3⁄  

,elastic surface 

waves   
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5. Results  

5.1 Dispersion curves  

 

      Figure 8 presents the dispersion curves of the new surface acoustic wave. Using 

Eq.22 one can show that if 𝜔 → 0 then 𝑘(𝜔) → 0. On the other hand, when 𝜔 → 𝜔𝑠𝑝 

then the wavenumber 𝑘(𝜔) → ∞, (see Fig.8).  

 

 

Fig.8 Normalized angular frequency 𝜔 𝜔𝑠𝑝⁄  versus normalized wavenumber 

𝑘(𝜔) 𝑘2⁄ , for 𝑟 = 𝜌1 𝜌2⁄  as a parameter (𝑠44
(2)

𝑠0⁄ = 1).  

 

5.2. Phase velocity  

 

      Eq.25 shows that if 𝜔 → 0 then 𝑣𝑝(𝜔) → 𝑣2. On the other hand, when 𝜔 → 𝜔𝑠𝑝 

then the phase velocity 𝑣𝑝(𝜔) → 0, (see Fig.9).  

 

 

Fig.9 Normalized phase velocity 𝑣𝑝(𝜔) 𝑣2⁄  versus normalized angular frequency 

𝜔 𝜔𝑠𝑝⁄ , for 𝑟 = 𝜌1 𝜌2⁄  as a parameter (𝑠44
(2)

𝑠0⁄ = 1)  
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5.3. Group velocity  

 

      Closer look at Eq.26 reveals that if 𝜔 → 0 then 𝑣𝑔(𝜔) → 𝑣2 (see Fig.10. On the 

other hand, when 𝜔 → 𝜔𝑠𝑝 then 𝑣𝑔(𝜔) → 0. Thus, phase 𝑣𝑝(𝜔) and group 𝑣𝑔(𝜔)  

velocities tend to the same limiting values for 𝜔 → 0 and 𝜔 → 𝜔𝑠𝑝, (see Figs 9 and 

10).  

 

Fig.10 Normalized group velocity 𝑣𝑔(𝜔) 𝑣2⁄  versus normalized angular frequency 

𝜔 𝜔𝑠𝑝⁄ , for 𝑟 = 𝜌1 𝜌2⁄  as a parameter (𝑠44
(2)

𝑠0⁄ = 1)  

 

5.4. Penetration depths in both half-spaces  

 

      Equation 27 shows that If the angular frequency 𝜔 → 0 then the normalized 

penetration depth in the metamaterial half-space δ1(ω) λ → 0⁄ . On the other hand, 

when 𝜔 → 𝜔𝑠𝑝 then δ1(ω) λ → 1 2π⁄⁄ . Thus, the normalized penetration depth 

δ1(ω) λ⁄  in the metamaterial half-space is always subwavelength, i.e., 

δ1(ω) λ <⁄ 1 2π⁄ , (see Fig.11).  
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Fig.11 Normalized penetration depth 𝛿1(𝜔) 𝜆⁄  in the metamaterial half-space,   

versus normalized angular frequency 𝜔 𝜔𝑠𝑝⁄ , for  𝑟 = 𝜌1 𝜌2⁄  as a parameter 

(𝑠44
(2)

𝑠0⁄ = 1).  

 

      On the other hand (see Eq.28), the normalized penetration depth in the 

conventional elastic half-space δ2(ω) λ → ∞⁄ , if angular frequency 𝜔 → 0.  Similarly, 

when 𝜔 → 𝜔𝑠𝑝 then δ2(ω) λ → 1 2π⁄⁄ . As a result, the normalized penetration depth 

δ2(ω) λ⁄  is higher than "1" (see dotted horizontal line in Fig.12) for low frequencies 

and subwavelength for high frequencies approaching the cut-off frequency 𝜔𝑠𝑝, (see 

Fig.12).  

 

 

Fig.12 Normalized penetration depth 𝛿2(𝜔) 𝜆⁄  in the conventional elastic half-space, 

versus normalized angular frequency 𝜔 𝜔𝑠𝑝⁄ , for 𝑟 = 𝜌1 𝜌2⁄  as a parameter (𝑠44
(2)

𝑠0⁄ =

1).  

 

5.5. Active power flow in the direction of propagation 𝑥1  

 

      Using Eq.33 in conjunction with Eqs. 27 and 28 one can show that if 𝜔 → 0 then 

𝑃1
(1)(𝜔) 𝑃1

(2)(𝜔)⁄ → 0. On the other hand, if 𝜔 → 𝜔𝑠𝑝 then 𝑃1
(1)(𝜔) 𝑃1

(2)(𝜔)⁄ → −1, (see 

Fig.13).  
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Fig.13 Ratio of active power flows −𝑃1
(1)(𝜔) 𝑃1

(2)(𝜔)⁄ , in the direction of propagation 

𝑥1, versus normalized angular frequency 𝜔 𝜔𝑠𝑝⁄ , for 𝑠 = 𝑠44
(2)

𝑠0⁄  as a parameter. 𝜌1 

and 𝜌2 are arbitrary.  

 

5.6. Reactive power flow in the transverse direction 𝑥2  

 

      From Eq. 36 we can conclude that if 𝜔 → 0 then 𝑃2
(1)(𝜔)/𝑃2

(2)(𝜔) tends to zero. 

On the other hand, if 𝜔 → 𝜔𝑠𝑝 then 𝑃2
(1)(𝜔) 𝑃2

(2)(𝜔)⁄ → 1, (see Fig.14).  

 

 

Fig.14 Ratio of reactive power flows 𝑃2
(1)(𝜔) 𝑃2

(2)(𝜔)⁄ , in the transverse direction 𝑥2, 

versus normalized angular frequency 𝜔 𝜔𝑠𝑝⁄ , for 𝑠 = 𝑠44
(2)

𝑠0⁄  as a parameter. 𝜌1 and 

𝜌2 are arbitrary.  
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6. Discussion  

 

      Acoustic surface waves propagating in metamaterial waveguides were subject of 

a number of papers that analyzed Rayleigh surface waves at the solid-vacuum 

interface [20], Scholte interfacial waves at the solid-liquid interface [21], shear 

horizontal waves on a semi-infinite half-space loaded with a metasurface [22, 23] 

and Love surface waves in waveguides loaded with a metasurface [24]. However, to 

the best of our knowledge SH elastic surface waves propagating at the interface 

between two elastic half-spaces, one of which is an elastic metamaterial, were yet 

analyzed in the scientific literature.  

 

      Our former research [25] on elastic surface waves propagating in conventional 

elastic waveguides showed that SH surface waves, such as Love surface waves 

[26], share many common properties with waves in other domains of physics, such 

as TM (Transverse Magnetic) modes in optical planar waveguides or wave function 

of quantum particles in a potential well. However, the present paper was mostly 

influenced by recent developments in the domain of elastic metamaterials and SPP 

electromagnetic surface waves propagating at the metal-dielectric interface [27].  

 

      In this paper we demonstrated that the ultrasonic analogue of SPP 

electromagnetic waves can exist in layered elastic waveguides consisting of 2 elastic 

half-spaces, providing that one of the elastic half-spaces is an elastic metamaterial 

with a negative elastic compliance 𝑠44
(1)(𝜔) that corresponds to the dielectric function 

𝜀(𝜔) in Drude's model of metals. These two types of waves have similar: 1) 

distribution of wave fields, 2) dispersion equations etc.  

 

      The dispersion curves of the new ultrasonic wave shown in Fig.8 have the 

characteristic property that the wavenumber 𝑘(𝜔) tends to infinity 𝑘(𝜔) → ∞, when 

the wave angular frequency 𝜔 approaches cuff-of angular frequency 𝜔𝑠𝑝. This 

means that the wavelength 𝜆 of the new ultrasonic surface wave tends to zero 𝜆 → 0 

when 𝜔 → 𝜔𝑠𝑝, what can be employed in the subwavelenght near field acoustic 

imaging.  

 

      A very intriguing property of the new SH ultrasonic waves is that they slow down, 

i.e., the phase 𝑣𝑝(𝜔) and group 𝑣𝑔(𝜔) velocities tend to zero as the wave frequency 

approaches the cut-off frequency 𝜔 → 𝜔𝑠𝑝 (see Figs. 9 and 10). This property is 

crucial in potential applications of the new SH ultrasonic wave in ultrasonic sensors 

with extremely large mass sensitivity.  

      This paper contains a number of new original formulas, that to the best of our 

knowledge, were not yet published in the literature, namely:  

 

- relation for the product of penetration depths 𝛿1(𝜔), 𝛿2(𝜔) in two half-spaces of 

the waveguide (Eq.30)  
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- relation between active power flows  𝑃1
(1)(𝜔), 𝑃1

(2)(𝜔) in the direction of 

propagation 𝑥1 and penetration depths 𝛿1(𝜔), 𝛿2(𝜔) in two half-spaces of the 

waveguide (Eq.33)  

- relation between reactive power flows  𝑃2
(1)(𝜔), 𝑃2

(2)(𝜔) in the transverse 

direction 𝑥2 and penetration depths 𝛿1(𝜔), 𝛿2(𝜔) in two half-spaces of the 

waveguide (Eq.36)  

- relation between active power flows  𝑃1
(1)(𝜔), 𝑃1

(2)(𝜔) in the direction of 

propagation 𝑥1 and reactive power flows  𝑃2
(1)(𝜔), 𝑃2

(2)(𝜔) in the transverse 

direction 𝑥2 of the waveguide (Eq.37)  

 

All new equations mentioned above in the mechanical domain can be directly 

transferred into the domain of SPP electromagnetic surface waves, using to this end 

Table 1 presented in Section 4. In particular, the relation between the penetration 

depths 𝛿1(𝜔), 𝛿2(𝜔) in two half-spaces of the waveguide (Eq.30) can be useful for 

designers of SPP electromagnetic sensors, in selection of proper wave frequency 

providing high subwavelength concentration of energy in the dielectric material of the 

waveguide leading to long range propagation of SPP waves.  

 

      Similarly, the new relations between the power flows and the penetration depths 

in two half-spaces of the waveguide (Eqs. 33 and 36) indicate that the proper control 

of the active power flow in the direction of propagation may be very important in 

achieving high sensitivity of long range SPP sensors with low losses.  

 

      The results presented in Figs. 8-12 reveal that the densities 𝜌1, 𝜌2, in both half-

spaces of the waveguide, have a profound impact on all parameters of the proposed 

new elastic surface waves. For example, if 𝜌1 𝜌2⁄ = 1, the penetration depth in the 

metamaterial half-space 𝛿1(𝜔) is ~43 times smaller than the wavelength 𝜆 of the 

wave, at 𝜔 𝜔𝑠𝑝⁄ = 0.2 (see green curve Fig.11). By contrast, if 𝜌1 𝜌2⁄ = 20 the 

penetration depth 𝛿1(𝜔) decreases significantly and is ~167 times smaller than the 

wavelength 𝜆 (see red curve in Fig.11).  

 

      Therefore, since 𝜌1, 𝜌2 correspond to magnetic permeabilities 𝜇1, 𝜇2 in SPP 

electromagnetic waveguides (see Table 1 in Section 4) it implies that we can also 

effectively shape the characteristics of SPP electromagnetic waves by analogous 

adjustment of 𝜇1 and 𝜇2.  

 

      On the other hand, due to strong formal similarities between the new SH acoustic 

surface waves and SPP electromagnetic surface waves it may be possible in future 

to transfer newly discovered SPP phenomena, such as cloaking [14], trapping (zero 

group velocity) [13] and topological protection [15] into the domain of elastic 

metamaterials using to this end the new SH elastic surface waves, proposed in this 

paper.  
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      Thus, the proposed new SH acoustic surface waves open new possibilities to 

control wave phenomena in elastic solids and can constitute the basis for a new 

generation of modern devices in the domain of microwave acoustics.  

 

      As a result, this paper is an example of multidisciplinary research that can shed 

new valuable and sometimes unexpected physical insight on physical phenomena 

occurring in two domains of physics, i.e., theory of elasticity and electromagnetism.  

 

      It will be advantageous in future research to extend the analysis of the new SH 

elastic surface waves on waveguides with losses as well as to design a model of a 

biosensor based on the analogy with SPP electromagnetic devices [28, 29].  

 

 

 

  



30 
 

7. Conclusions  

 

      Based on the results of research presented in this paper, we can draw the 

following conclusions:  

 

1. The new SH elastic surface waves can be considered as an elastic analogue 

of the electromagnetic SPP waves, due to strong formal similarities of their 

mathematical models (Table 1 in Section 4).  

 

2. The new SH elastic surface waves can exist at the interface of two elastic 

half-spaces one of which is an elastic metamaterial with a negative 

compliance 𝑠44
(1)

(𝜔) ∙ 𝑠44
(2)

< 0 (Eq.21).  

 

3. Phase velocity 𝑣𝑝(𝜔) of the new SH ultrasonic surface waves is antiparallel to 

the active power flow 𝑃1
(1)(𝜔) in the metamaterial half-space and parallel to 

the active power flow 𝑃1
(2)(𝜔) in the conventional elastic half-space.  

 

4. Active power flows 𝑃1
(1)(𝜔), 𝑃1

(2)(𝜔) of the new SH elastic surface waves, in 

both half-spaces, are antiparallel along the direction of propagation 𝑥1, (Eqs. 

31 and 32).  

 

5. Reactive power flows 𝑃2
(1)(𝜔), 𝑃2

(2)(𝜔), in the transverse direction 𝑥2, have the 

same sign (+) corresponding to the inductive type of the reactive power, 

oscillating between two half-spaces of the waveguide (Eqs. 34 and 35).  

 

6. The penetration depth 𝛿1(𝜔) of the new SH elastic surface waves in the 

metamaterial half-space is always smaller than that in the conventional elastic 

half-space 𝛿2(𝜔), i.e., 𝛿1(𝜔) < 𝛿2(𝜔) (Figs. 11 and 12).  

 

7. The ratio of the active power flows 𝑃1
(1)(𝜔) 𝑃1

(2)(𝜔)⁄  and the corresponding 

ratio of the reactive power flows 𝑃2
(1)(𝜔) 𝑃2

(2)(𝜔)⁄  are intimately related to the 

ratio of the penetration depths 𝛿1(𝜔)/𝛿2(𝜔) in both half-spaces of the 

waveguide (Eqs. 33, 36 and Figs. 13-14).  

 

8. The ratio of the active power flows 𝑃1
(1)(𝜔) 𝑃1

(2)(𝜔)⁄  and the corresponding 

ratio of the reactive power flows 𝑃2
(1)(𝜔) 𝑃2

(2)(𝜔)⁄  are not independent since 

they are related via Eq.37.  

 

9. The penetration depth (see Figs. 11 and 12) in both elastic half-spaces of the 

waveguide is deeply subwavelength. Therefore, the new SH elastic surface 

waves can find applications in sensors of extremely high mass sensitivity, 
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superlensing and in near field acoustic microscopy with a subwavelength 

resolution and imaging. These are very exciting applications of the newly 

discovered SH ultrasonic waves.  

 

10. A number of new formulas (Eqs. 30, 33, 36 and 37) developed in this paper 

may be useful in design of long range SPP waveguides with low propagation 

losses.  

 

11. The densities 𝜌1, 𝜌2, in both half-spaces of the waveguide, have a profound 

impact on all parameters of the proposed new elastic surface waves (Figs 8-

12). Therefore, by virtue of Table 1 in Section 4 we can also effectively shape 

the characteristics of SPP electromagnetic waves by analogous adjustment of 

the corresponding magnetic permeabilities 𝜇1 and 𝜇2.  

 

12. Newly discovered SPP phenomena, such as cloaking, trapping (zero group 

velocity) and topological protection can be transferred into the domain of 

elastic metamaterials using to this end the new SH elastic surface waves, 

proposed in this paper. This is a novelty.  

 

      The proposed, in this paper, new SH ultrasonic surface wave could play a key 

role in achieving subwavelength acoustic imaging, enhanced transmission, slow 

wave effects and superlensing below the diffraction limit.  

 

      Because of its interdisciplinary character, this paper can be of interest for a broad 

spectrum of researchers working in different domains of physics such as: acoustics, 

ultrasonics, elastodynamics, metamaterials, electromagnetism and optics.  
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