
Ultrasonics xxx (2015) xxx–xxx
Contents lists available at ScienceDirect

Ultrasonics

journal homepage: www.elsevier .com/locate /ul t ras
Propagation of ultrasonic Love waves in nonhomogeneous elastic
functionally graded materials
http://dx.doi.org/10.1016/j.ultras.2015.10.001
0041-624X/� 2015 Elsevier B.V. All rights reserved.

⇑ Corresponding author. Tel.: +48 (22) 8261281x416; fax: +48 (22) 8269815.
E-mail address: pkielczy@ippt.gov.pl (P. Kiełczyński).
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a b s t r a c t

This paper presents a theoretical study of the propagation behavior of ultrasonic Love waves in nonho-
mogeneous functionally graded elastic materials, which is a vital problem in the mechanics of solids.
The elastic properties (shear modulus) of a semi-infinite elastic half-space vary monotonically with the
depth (distance from the surface of the material). The Direct Sturm–Liouville Problem that describes
the propagation of Love waves in nonhomogeneous elastic functionally graded materials is formulated
and solved by using two methods: i.e., (1) Finite Difference Method, and (2) Haskell-Thompson
Transfer Matrix Method.
The dispersion curves of phase and group velocity of surface Love waves in inhomogeneous elastic

graded materials are evaluated. The integral formula for the group velocity of Love waves in nonhomo-
geneous elastic graded materials has been established. The effect of elastic non-homogeneities on the dis-
persion curves of Love waves is discussed. Two Love wave waveguide structures are analyzed: (1) a
nonhomogeneous elastic surface layer deposited on a homogeneous elastic substrate, and (2) a semi-
infinite nonhomogeneous elastic half-space. Obtained in this work, the phase and group velocity disper-
sion curves of Love waves propagating in the considered nonhomogeneous elastic waveguides have not
previously been reported in the scientific literature. The results of this paper may give a deeper insight
into the nature of Love waves propagation in elastic nonhomogeneous functionally graded materials,
and can provide theoretical guidance for the design and optimization of Love wave based devices.

� 2015 Elsevier B.V. All rights reserved.
1. Introduction

Shear horizontal (SH) surface Love waves have long been used
in many fields of science and technology, e.g., in geophysics [1],
seismology [2], non-destructive testing (NDT) of materials [3,4]
and for determining the physical properties of materials. Sensors
based on Love waves (due to their high sensitivity) are used for
measuring physical properties of the liquid (e.g., viscosity and den-
sity) [5–7] as biosensors [8] and chemo-sensors [9], to investigate
of thin films [10] and layers produced in the surface region of the
substrate as a result of various technological processes (diffusion,
implantation, carburizing, nitriding, shot peening, the laser
treatment, etc.) [11], and also for testing of composites [12]. The
use of layered Love waves waveguides with a nonhomogeneous
distribution of physical properties can significantly improve per-
formance (e.g., sensitivity and selectivity) of bio and chemosensors
that employ the inhomogeneous elastic waveguides [13].
SH surface acoustic waves (Love and Bleustein–Gulyaev type)
may also be used to study spatial profiles changes in mechanical
properties (e.g., modulus of elasticity and density) of the Function-
ally Graded Material (FGM) [14–17]. These materials are heteroge-
neous media, in which the mechanical parameters are functions of
the distance from the surface into the bulk of the material.
Functionally graded materials can provide elevated mechanical
properties (e.g., high strength and hardness) and superior exploita-
tion characteristics (e.g., crack, wear and corrosion resistance). The
FGM are widely used in modern industry (e.g., automotive, avia-
tion, aerospace and electronic) [18]. Love wave penetration depth
depends on the frequency. Thus, by changing the frequency of
the wave one can probe subsurface profiles of materials. Love wave
energy is concentrated near the surface of the waveguide. For this
reason, any disturbance in the material parameters in the surface
region have considerable impact on the dispersion characteristics
of the Love wave (i.e., velocity and attenuation). Therefore, the
Love waves are particularly convenient to study the physical
properties of inhomogeneous graded materials.

The aim of this study was to develop a theoretical model of the
propagation of SH (Shear Horizontal) surface Love waves in
terials,
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functionally graded materials with a monotonic variation of the
elastic properties with the depth (distance from the treated surface
of the material).

Determination of the phase velocity dispersion curves and the
distribution of the mechanical displacement (into the bulk of the
material) of the Love wave, for known profiles of elastic parameters
of the medium in which the Love wave propagates, constitutes a
Direct Sturm–Liouville Problem. In this study, the following pro-
files of the elastic coefficient c44ðxÞ were considered: (1) the square
root profile n ¼ 1=2, (2) linear profile n ¼ 1, (3) quadratic profile
n ¼ 2, (4) power type profile n ¼ 10, (5) step profile n ¼ 1, (6)

exponential profile, (7), profile of the 1=cosh2 type (similar to the
Gaussian profile). Governing equations of motion and the appropri-
ate boundary conditions are given. The Direct Sturm–Liouville
Problem has been solved using the Finite Difference Method and
Transfer Matrix Method (Haskell-Thompson) [19,20]. The article
includes a comparison of Love wave dispersion curves derived by
these two numerical methods. Moreover, the integral formula for
the group velocity of Love waves propagating in elastic graded
materials was established, which is a novelty.

The problem of the Love wave propagation in nonhomogeneous
elastic graded media was previously analyzed using various
approximate methods such as the method of Frobenius [21], the
method of Peano [22] and the WKB method [23]. However, these
methods are pre-computer era methods. Their use does not intro-
duce significant advantages in relations with modern numerical
methods such as Finite Difference Method (FDM), Finite Element
Method (FEM) or the Transfer Matrix Method (TMM). TMM
method was used to analyze the Love wave propagation in nonho-
mogeneous medium [24]. However, this study presents only a
general description of the TMM method without giving specific
examples of physically realistic nonhomogeneous profiles and
the corresponding dispersion curves.

In this work the problem of Love wave propagation in
nonhomogeneous graded media was solved using the TMM and
FDM methods. Phase and group velocity dispersion curves of
Love waves in selected nonhomogeneous elastic graded media
(power-law type profiles, exponential profile and the profile of
the type 1/cosh 2) were evaluated. According to the authors’ best
knowledge, evaluation of the phase and group velocity dispersion
curves for these selected profiles of the elastic modulus c44ðxÞ is
a novelty.

The results obtained in this work can constitute the basis of the
inverse procedure (Inverse Sturm–Liouville Problem) to determine
profiles (as a function of depth) of the mechanical properties of
Fig. 1. Geometry of the Love wave waveguide structure (inhomogeneous elastic
half-space), and coordinate system.

Please cite this article in press as: P. Kiełczyński et al., Propagation of ultrason
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inhomogeneous FGM resulting from the application of various
technological processes of surface treatment. The results of this
study also provide a more complete description (than those pub-
lished in the scientific literature) of the propagation of Love waves
in graded materials with various profiles of changes in elastic prop-
erties, e.g., in layered inhomogeneous microstructures used in
MEMS (Micro Electro Mechanical Systems) and other microelec-
tronic devices, in photonics and in acoustoelectronics [3,25].

The results of this study can also find application in geophysics,
earthquake engineering [26] and seismology to investigate the
internal structure of Earth. Moreover, they can be very helpful in
exploration of natural resources (e.g., gas and petroleum) [27].

Due to the similarity of the mathematical description of the
phenomenon of propagation of Love waves in elastic inhomoge-
neous media and a description of the propagation of light waves
in inhomogeneous planar optical waveguides, established in this
work the theory of Love waves in elastic inhomogeneous media
can also be used to analyze performance of inhomogeneous optical
planar waveguides [28].

The results obtained in this paper are novel and fundamental
and can give more profound insight into the nature of Love wave
propagation in the elastic nonhomogeneous media (e.g., in
functionally graded materials and composites).

Section 2 presents a mathematical model of the propagation of
Love waves in the graded materials formulated as a Direct Sturm–
Liouville Problem. Section 3 shows the considered shear modulus
profiles c44ðxÞ in the graded medium. Description of numerical
methods applied to solve the Direct Sturm–Liouville Problem
(i.e., the Finite Difference Method and Transfer Matrix Method) is
included in Section 4. Section 5 contains the results of numerical
calculations and discussion of the results. Finally, conclusions are
presented in Section 6.
2. Direct Sturm–Liouville Problem

Love wave propagation in inhomogeneous elastic media can be
described in terms of the Sturm–Liouville Direct Problem. Determi-
nation of the phase velocity and mechanical displacement distribu-
tion with depth of the SH surface Love wave from a knowledge of
elastic parameters of a non-homogeneous half-space constitutes a
Direct Sturm–Liouville Problem.
2.1. Love waves

2.1.1. Formulation of the problem
Consider the Love wave that propagates in a nonhomogeneous

elastic half-space, as shown in Fig. 1. The elastic properties of inho-
mogeneous half-space vary monotonically with depth (distance
from the surface).

Mechanical vibrations of the SH surface Love wave are
performed along the y axis perpendicularly to the direction of
propagation z and parallel to the propagation surface. The x axis
is normal to the waveguide surface.

Mathematical description of the propagation of surface shear
Love waves in graded media involves the use of continuum
mechanics formalism to describe the motion of inhomogeneous
elastic half-space.

SH surface wave of the Love type which propagates in a nonho-
mogeneous waveguide structure of Fig. 1 may be represented in
the following form: vðx; z; tÞ ¼ VðxÞ � exp jðbz�xtÞ, where: VðxÞ is
the distribution of the mechanical displacement of the Love wave

with the depth, b is the wave propagation constant, j ¼ ð�1Þ1=2, x
is the distance from the surface (depth), z is the direction of wave
propagation and x is angular frequency.
ic Love waves in nonhomogeneous elastic functionally graded materials,
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2.1.2. Boundary conditions
Mechanical field generated by Love waves propagating in an

inhomogeneous elastic graded medium satisfies the following
boundary conditions:

(a) on a free surface (x ¼ 0), the transverse shear stress syx ¼
c44ð0Þ � dVð0Þdx � expfjðbz�xtÞg is equal to zero, hence dVð0Þ

dx ¼ 0
(b) at each interface between two layers the condition of conti-

nuity of mechanical displacement v and transverse shear
stress syx is fulfilled

(c) at large distances (x ! 1) from the surface (x ¼ 0) the
mechanical displacement of the Love wave should tend to
zero, i.e., Vð1Þ ¼ 0.

2.1.3. Governing equations
The equation of motion (along with the appropriate boundary

conditions) for Love waves propagating in an inhomogeneous elas-
tic medium (isotropic and in some specified directions in media of
regular and hexagonal symmetry) is represented by the following
Differential Problem:

d
dx

c44ðxÞdVðxÞdx

� �
þ qx2VðxÞ ¼ c44ðxÞb2VðxÞ ð1Þ

d
dx

Vð0Þ ¼ 0; Vð1Þ ¼ 0 ð2Þ

where VðxÞ is the mechanical displacement distribution of the Love
wave with the depth x. c44ðxÞ is the elastic shear modulus that
depends on the depth. b2 is an eigenvalue determining the phase
velocity of the Love wave. q is the density of the medium, and x
is the angular frequency.

The Sturm–Liouville Differential Problem (1–2) is a mathemat-
ical model describing the propagation of SH surface Love waves in
nonhomogeneous elastic graded materials.

The solution of this Direct Sturm–Liouville Problem is a set of
pairs fb2

i ;ViðxÞg; wherein b2
i is the i-th eigenvalue, i ¼ 0;

2; . . . ;n1 � 1, n1 is the number of modes of Love waves propagating
in considered waveguide and ViðxÞ is the eigenvector correspond-
ing to this eigenvalue. Eigenvalue corresponds to the phase veloc-
ity of the SH surface wave, while the eigenvector describes the
distribution of the mechanical displacement of the corresponding
mode of the SH surface wave as a function of depth.

For a given frequency of the SH surface wave we obtain the cor-
responding eigenvalue i.e., Love wave phase velocity. The resulting
set of the of phase velocities of the Love surface wave for various
values of frequency determines the dispersion curve of the Love
wave.

The concentration of the Love wave energy in the vicinity of the
surface for the fundamental mode (i = 0) is large. The concentration
of energy in the subsurface region for higher modes is much smal-
ler (due to their large penetration depth). For this reason, sensors
of physical quantities of liquids (e.g., viscosity and density) based
on the use of the fundamental mode of Love waves have the
highest sensitivity.

Higher modes of Love waves propagate at higher frequencies
than the fundamental mode. In the actual media, at higher fre-
quencies the losses are greater. Losses in the viscoelastic media
grow with the square of the frequency. For this reason, higher
modes of Love waves are subject to a stronger attenuation than
the fundamental mode, as they travel.

All the above mentioned properties of the Love waves motivate
the use only fundamental mode in the Love wave based chemo and
bio-sensors.

Considering the above arguments, in the present paper, we
restricted our analysis of the propagation of Love waves in graded
materials to the fundamental mode (i = 0) of Love waves. The
Please cite this article in press as: P. Kiełczyński et al., Propagation of ultrason
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constant density of the considered graded materials
q ¼ q0 ¼ const was assumed throughout the paper.

2.2. Group velocity

The group velocity of Love wave was calculated by means of a
method employed in the theory of planar optical waveguides
[29]. A similar relationship between the phase velocity and the
group velocity can be developed by using formulas for the poten-
tial and kinetic energy of Love waves resulting from Analytical
Mechanics [30]. These two methods are integral methods, in which
information about the eigenvalue (phase velocity of the Love wave
vp) and the eigenvector (distribution of the mechanical displace-
ment VðxÞ of the Love wave with the depth) is used.

The Differential Problem Eqs. (1) and (2) can be formulated in
integral (variational) form in terms of the Rayleigh quotient:

b2 ¼
R1
0 �c44ðxÞ dVðxÞ

dx

� �2
þ qx2V2ðxÞ

� �
dxR1

0 c44ðxÞV2ðxÞdx ð3Þ

By differentiating the Rayleigh quotient (Eq. (3)) with respect to the
angular frequency x [28], we arrive at the following formula:

vpvg

v2
0

¼
R1
0

c44ðxÞ
c0

V2ðxÞdxR1
0 V2ðxÞdx ð4Þ

where c0 is the shear elastic modulus in the substrate, and
v0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

c0=q0

p
is the phase velocity of bulk SH waves in the substrate,

ðx ! 1Þ.
Eq. (4) links vp and vg for Love waves propagating in elastic

graded materials. Knowing vp (for given values of v0 and VðxÞÞ,
one can calculate the group velocity vg and vice versa.

3. Various profiles in graded materials

Profiles of elastic properties of the surface layers in the graded
materials are produced due to the use of various technological
processes such as rolling, laser hardening (parabolic profile), shot
peening, nitriding, carburizing (linear profile), boronizing. More-
over, the processes typical for the microelectronics and integrated
optics, such as ion implantation and diffusion lead to exponential
and Gaussian profiles.

In the present study the following profiles of elastic properties
(shear modulus c44ðxÞ) in heterogeneous graded materials were
examined, see Fig. 2a and b:

1. Profiles of the power-law type
(a) square root type profile n ¼ 1=2 (profile no. 1 in Fig. 2a)
c44ðxÞ=c0 ¼ 1� ðDc=c0Þ½1� ðx=DÞ1=2�½Hðx� DÞ � HðxÞ� ð5aÞ
(b) linear profile n ¼ 1 (profile no. 2 in Fig. 2a)

c44ðxÞ=c0 ¼ 1� ðDc=c0Þ½1� x=D�½Hðx� DÞ � HðxÞ� ð5bÞ
(c) quadratic profile n ¼ 2 (profile no. 3 in Fig. 2a)

c44ðxÞ=c0 ¼ 1� ðDc=c0Þ½1� ðx=DÞ2�½Hðx� DÞ � HðxÞ� ð5cÞ
(d) power type profile n ¼ 10 (profile no. 4 in Fig. 2a)

c44ðxÞ=c0 ¼ 1� ðDc=c0Þ½1� ðx=DÞ10�½Hðx� DÞ � HðxÞ� ð5dÞ
(e) step profile n ¼ 1 (typical for classical Love wave, profile

no. 5 in Fig. 2a)

c44ðxÞ=c0 ¼ 1� ðDc=c0Þ½Hðx� DÞ � HðxÞ� ð5eÞ
where HðxÞ is the Heaviside step function, D is the depth of an inho-
mogeneous elastic layer.
ic Love waves in nonhomogeneous elastic functionally graded materials,
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Fig. 2. (a, b) Considered profiles of elastic properties of graded materials, (a) profiles in a nonhomogeneous surface layer x 2 ½0;D�, (b) profiles in a nonhomogeneous half-
space x 2 ½0;1�.
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2. Exponential profile (profile no. 6 in Fig. 2b)
Please
Ultras
c44ðxÞ=c0 ¼ 1� ðDc=c0Þ � expð�2x=DÞ ð5fÞ

3. Profile of the 1=cosh2ðxÞ type, which is similar to the Gaussian

profile (profile no. 7 in Fig. 2b)
c44ðxÞ=c0 ¼ 1� ðDc=c0Þ � 1=cosh2ð2x=DÞ ð5gÞ

The profiles of the elastic parameter c44ðxÞ from Fig. 2a and b are

realistic and physically realizable.
The surface SH Love wave propagates in a nonhomogeneous

elastic graded material. The elastic properties of this medium
c44ðxÞ are only a function of the depth x. In the case of square root,
linear, quadratic, power (n ¼ 10), and step profiles the inhomo-
geneity in the elastic constant has a finite depth D. On the other

hand, for exponential and 1=cosh2ð2x=DÞ type profiles the distur-
bance of the elastic constant c44ðxÞ extends to infinity (x ! 1).
The parameter D in formulas (5f) and (5g) specifies the depth of
the disturbed surface layer.
4. Solution of the Direct Sturm–Liouville Problem

No analytical solutions for the Differential Problem (1–2) are
available for general depth dependence of variable coefficient
c44ðxÞ. Solution of the Sturm–Liouville Problem (1–2) for arbitrary
function c44ðxÞ is possible only numerically. A variety of numerical
methods to solve this kind of differential problems exist, namely:

� Finite Difference Method (FDM).
� Variational Methods, e.g., the Ritz Method.
� Galerkin Method.
� Finite Element Method (FEM).
� Boundary Element Method (BEM).
� Green Function Method.
� Transfer Matrix Method.

The Differential Problem (1–2) is one-dimensional, therefore
the above-mentioned numerical methods are essentially equiva-
lent in application to solve this Differential Problem (1–2).

In the present work to solve the Differential Problem (1–2) two
numerical methods, i.e., (1) Finite Difference Method (FDM), and
(2) Transfer Matrix Method have been used. Solution of the Direct
Sturm–Liouville Problem can constitute the basis for the solution
of the Inverse Sturm–Liouville Problem.
cite this article in press as: P. Kiełczyński et al., Propagation of ultrason
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4.1. Finite Difference Method (FDM)

Finite Difference Method is the simplest numerical method for
solving differential boundary problems and for one-dimensional
problems is equivalent to the Finite Element Method. The
unknown function of mechanical displacement V ¼ ½V1; . . . ;Vm�T
is calculated only for a finite number m of discrete points in the
region of interest in the x-axis, [0,H]. Region of interest [0,H] was
equal 10 � D for both cases of discretization shown in Fig. 3a and
b. In this work, the interval [0,H] was discretized over a mesh of
m ¼ 100 equally distributed points.

Differential operator from Eq. (1) is approximated by a Differ-
ence Operator. In this manner, we obtain a Difference Problem,
which approximates the initial Differential Problem (1–2):

½M�½V � ¼ b2½B�½V � ð6Þ

where V ¼ ½V1; . . . ;Vm�T is the eigenvector, b2 is the eigenvalue. The
matrix [M] is a tridiagonal matrix of dimension (m�m). The matrix
[B] is a diagonal matrix (m�m).

By solving the matrix eigen-equation (6) we get a set of pairs

fb2
i ;Vig; where b2

i is the i-th eigenvalue, and Vi ¼ ½Vi
1; . . . ;V

i
m�

T
is

the eigenvector corresponding to the i-th eigenvalue. The largest
positive eigenvalue b2

i ¼ b2
max corresponds to the fundamental

mode of the Love wave propagating in a considered non-
homogeneous graded medium. In this manner, we obtain the
phase velocity of the Love wave vp ¼ x=bmax. The corresponding

eigenvector Vmax ¼ Vmax
1 ; . . . ;Vmax

m

	 
T determines the distribution
of the mechanical displacement of the Love wave with depth.
4.2. Transfer Matrix Method

The equation of motion Eq. (1) is an ordinary differential equa-
tion of second order. By introducing a new variable T ¼ c44ðxÞ dV

dx,
this second order differential Eq. (1) can be represented as a system
of two differential equations of the first order, namely:

d
dx

V

T

� �
¼ ½A� V

T

� �
¼

0; 1
c44ðxÞ

b2c44ðxÞ �x2qðxÞ; 0

" #
V

T

� �
ð7Þ

Transverse shear stress can be represented as:
syx ¼ TðxÞ � exp½jðbz�xtÞ�. The system of Eq. (7) will be solved by
using the Transfer Matrix Method.
ic Love waves in nonhomogeneous elastic functionally graded materials,
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Fig. 3. (a, b) Partition of a nonhomogeneous Love wave waveguide into homogeneous elastic layers, (a) for power type profiles (curves nos. 1, 2, 3, 4, and 5 in Fig. 2a), N ¼ 10,
and (b) for the exponential profile and the profile of 1=cosh2 type (curves nos. 6, and 7 in Fig. 2b), K ¼ 100.
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Non-homogeneous profiles of the modulus c44ðxÞ, that were
considered in this work are shown in Fig. 2a and b. In the Transfer
Matrix Method, non-homogeneous elastic graded medium, in
which the Love wave propagates, is divided into a finite number
of homogeneous elastic layers. The non-homogeneous elastic layer
(rigidly attached to the homogeneous substrate) from Fig. 2a is
divided into N parts, see Fig. 3a. On the other hand non-uniform
elastic half-space from Fig. 2b is divided into K equal parts, see
Fig. 3b.

At the interfaces between the subsequent elastic layers, conti-
nuity condition of the mechanical displacement V and transverse
shear stress T is fulfilled. Eq. (7) is a matrix differential equation.
The solution of this equation is as follows:

VðxÞ
TðxÞ

� �
¼ ½expðAxÞ� � Vð0Þ

Tð0Þ

� �
ð8Þ

The matrix ½A� can be diagonalized i.e., can be represented as
½A� ¼ ½U�½D�½U�1�, where ½D� is a diagonal matrix, the diagonal of
which contains eigenvalues (k1; k2) of matrix ½A� i.e.,

k1 ¼ m ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �x2qðxÞ=c44ðxÞ

q
and k2 ¼ �m ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 �x2qðxÞ=c44ðxÞ

q
.

½U� is a 2� 2 matrix, the columns of which are eigenvectors of
the matrix ½A�, thus we can write:

½U� ¼ 1; 1
m; �m

� �
; ½U�1� ¼ 1

2m
m; 1
m; �1

� �
; ½D� ¼ m; 0

0; �m

� �
;

Consequently, using the formula of linear algebra we get:

½expðAxÞ� ¼ ½U� � ½expðDxÞ� � ½U�1�

¼ 1; 1
m; �m

� �
expðmxÞ; 0

0; expð�mxÞ

� �
1
2m

m; 1
m; �1

� �
ð9Þ

In general, the eigenvalues (m;�m) are imaginary quantities,
therefore we can write m ¼ jq.

By performing matrix multiplication in formula (9) we arrive at
the following form of matrix ½expðAxÞ�:

½expðAxÞ� ¼ cosðqxÞ 1; 1
c44ðxÞq tanðqxÞ

�c44ðxÞq tanðqxÞ; 1

" #
ð10Þ

The matrix ½expðAxÞ� is responsible for the transformation of the
vector ½V ; T�T between the upper and the lower surface of a homo-
geneous elastic layer of thickness h, see Fig. 3a and b. Knowing
the value of the displacement and stress ½V ; T�T in the plane x ¼ 0,
and using formulas (8) and (10), one can specify the value of the
displacement and stress in the plane x ¼ h, see Fig. 3a and b:
Please cite this article in press as: P. Kiełczyński et al., Propagation of ultrason
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V

T

� �����
x¼h

¼ cosðqhÞ � 1; 1
c44ðhÞq tanðqhÞ

�c44ðhÞq tanðqhÞ; 1

" #
� V

T

� �����
x¼0

ð11Þ
Applying this procedure successively from the last layer with the
number K and/or N to the first layer with the number 1, see
Fig. 3a and b, the mechanical displacement V and stress T in the
plane x ¼ 0 (upper limit of the region of interest) become
dependent on the displacement and stress in the plane x ¼ H (lower
limit of the region of interest), namely:

V

T

� �����
x¼0

¼ P11; P12

P21; P22

� �
� V

T

� �����
x¼H

ð12Þ

Matrix ½P� is the propagator matrix. Matrix ½P� is a product of (K and/
or N) subsequent matrices (see Eq. (11)) contributed by each layer.

Insertion of the boundary conditions in the plane x ¼ 0 and
x ¼ H to Eq. (12) leads to the following nonlinear algebraic
equation for b2 as the unknown:

P22ðb2;xÞ ¼ 0 ð13Þ
Eq. (13) is the dispersion equation for the Love wave propagating in
the considered heterogeneous graded media.

Solving this equation (for a given value of x) we obtain the
value of the wave number b. From the knowledge of the wave
number b one can then calculate the phase velocity of the Love
wave vp ¼ x=b.

Presented above procedure constitute the basis of the Transfer
Matrix Method [31].

The Transfer Matrix Method will be used in the numerical cal-
culations as one of methods for solving the Direct Sturm–Liouville
Problem.

5. Results of numerical calculations and discussion

To study the propagation behavior of ultrasonic Love waves in
non-homogeneous graded materials from Fig. 2a and b, the follow-
ing material parameters are assumed in the numerical
calculations:

c0 ¼ 2:564� 1010 N
m2 ; v0 ¼ 1849

m
s
;

q0 ¼ 7:5� 103 kg=m3; Dc=c0 ¼ 0:088; D ¼ 0:4 mm:

These parameters are typical for PZT-4 ceramics [32] with elastic
properties perturbed in the vicinity of the surface.
ic Love waves in nonhomogeneous elastic functionally graded materials,
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Fig. 5. Love wave dispersion curves of phase vp and group vg velocity for the shear
modulus profile that follows the exponential profile (plot no. 6 in Fig. 2b).
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Applying the Transfer Matrix Method and the Finite Difference
Method the dispersion curves of Love waves propagating in the
considered graded materials presented in Fig. 2a and b were
evaluated.

The variation of the phase velocity of the Love wave that prop-
agates in graded materials from Fig. 2a and b, versus normalized
depth D=L0 (normalized frequency) is plotted in Fig. 4. Numbers
of the dispersion curves in Fig. 4 correspond to the numbers of
the elastic profiles marked in Fig. 2.

Fig. 5 displays the dispersion curves of phase velocity vp and
group velocity vg of the Love wave propagating in the graded
materials of the exponential profile (Eq. (5f)) given in Fig. 2b (plot
no. 6).

Fig. 6 exhibits a graph of phase velocity vp and group velocity vg

of Love waves propagating in a graded medium with the profile of

the 1=cosh2ð2x=DÞ type, see Eq. (5g).

5.1. Influence of the inhomogeneity coefficient on the dispersion curves

The analysis of the effect of the inhomogeneity coefficient a on
the Love wave dispersion curves was performed on the example of

the 1=cosh2ðaxÞ type profile. Profiles of changes in the elastic coef-

ficient c44ðxÞ ¼ c0 � Dc=cosh2ðaxÞ, for the three values of the inho-
mogeneity coefficient: a ¼ 1=D;2=D;4=D, have been considered.
Phase and group velocity dispersion curves of the Love wave prop-
agating in the considered above waveguide structures have been
calculated, see Figs. 7 and 8.

As can be seen from Figs. 7 and 8, a change in the inhomogene-
ity coefficient a has a remarkable effect on the phase and group
velocity dispersion curves of Love waves. Love waves in the
high-frequency and low frequency range (for higher and lower val-
ues of normalized frequency D=L0) are less sensitive to the changes
of the inhomogeneity coefficient than Love waves in the
intermediate-frequency range (for moderate values of D=L0).

5.2. Comparison of the results obtained from FDM and TMM

The calculation of the phase velocity dispersion curves were
carried out by using two numerical methods, i.e., Finite Difference
0 1 2 3 4 5

D/L

1760

1780

1800

1820

1840

1860

Ph
as

e 
ve

lo
ci

ty
 [m

/s
]

0

2  (n = 1)

1  (n = 0.5)

3  (n = 2)

4  (n = 10)

5  (n =    )8

Fig. 4. Phase velocity vp of Love waves propagating in heterogeneous graded
materials presented in Fig. 2a. D is the thickness of the nonhomogeneous graded
elastic layer, L0 is the wavelength of the shear bulk wave in the substrate ðx ! 1).
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Method and Transfer Matrix Method. Resulting from the FDM
matrix Eq. (6) on the eigenvalues and eigenvectors, as well as the
nonlinear algebraic Eq. (13) resulting from the Transfer Matrix
Method for the eigenvalues b2 have been solved by using
numerical procedures of the software package Scilab.

Numerical calculations were performed for h=D ¼ 0:1, where h
is the thickness of a single layer obtained as a result of discretiza-
tion of the region of interest on a finite number of homogeneous
layers, see Fig. 3a and b. Only in the case of the exponential profile
shown in Fig. 5, numerical calculations (for h=D ¼ 0:1) were unsta-
ble. For this reason to eliminate the instability for exponential
profile, the use of a smaller value of the relative layer thickness
h=D ¼ 0:05 was required.

From the numerical calculations of authors follows that the
results obtained using these two methods are identical (with
ic Love waves in nonhomogeneous elastic functionally graded materials,
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accuracy of 5 decimal places). This indicates that these two numer-
ical methods are essentially equivalent in applications to describe
the propagation of Love waves in considered elastic graded
materials.

5.3. Discussion

As shown in Fig. 4 with the increase in the exponent n the phase
velocity dispersion curves for power type profiles approach the
classical Love wave dispersion curve for step profile (n ¼ 1). The
penetration depth of the mechanical displacement of the Love
wave (eigenvector) for step profile (n ¼ 1) is the lowest, and aug-
ments for the case of other power type profiles with decreasing
values of the exponent n.
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Fig. 8. Group velocity dispersion curves of Love waves for different values of the
inhomogeneity coefficient a for a profile of the 1=cosh2ðaxÞ type.
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As follows from Figs. 4–6, Love wave phase velocity tends to a
value of the phase velocity of the bulk shear wave at ðx ¼ 0Þ with
increasing D=L0 (i.e., with the frequency increase). As can be seen
from Figs. 5 and 6, the Love wave waveguide with the profile of

the 1=cosh2 type has better waveguide properties (higher slope
of the dispersion curve in the region of the steepest descent) than
the waveguide with the exponential profile. This indicates higher
sensitivity of phase velocity to changes in frequency. This is of
great importance in the design and construction of sensors of the
physical parameters that use the Love wave.

Group velocity of the Love wave propagating in the graded
materials with the exponential profile and the profile of the type

1=cosh2 was determined using the integral formula (4).
As can be seen in Figs. 5–8 the group velocity dispersion curves

of Love waves are always located below the corresponding phase
velocity dispersion curves.

It is a characteristic property of media exhibiting the so-called
normal dispersion.

In the numerical calculations, we assumed the value of thick-
ness D ¼ 0:4 mm. In this case, the value of D=L0 ¼ 1 corresponds
to frequency 4.6225 MHz, and D=L0 ¼ 10 corresponds to frequency
46.225 MHz. In the frequency range considered by the authors
ð4:6225� 46:225 MHzÞ, higher modes of Love waves may also
propagate. In this case, the largest positive eigenvalue ðb2Þ corre-
sponds to the fundamental mode. Other possible positive eigenval-
ues that correspond to the subsequent higher modes are smaller.
For example, for step profile (Eq. (5e)) and f ¼ 18:49 MHz, i.e.,
ðD=L0Þ ¼ 4, the fundamental mode ðb2 ¼ 4:32� 109Þ, the first over-
tone ðb2 ¼ 4:22� 109Þ, and second overtone ðb2 ¼ 4:04� 109Þ
occur. Based on this criterion, the fundamental mode was easily
separated and discriminated from the possible higher modes.

Measurement of surface waves velocity in the MHz frequency
range are usually performed in quantitative nondestructive evalu-
ation experiments (QNDE). Hence, the results obtained in this
paper can be important to the interpretation of experimental dis-
persion curves of surface Love waves propagating in elastic graded
materials.

6. Conclusions

In this paper, a theoretical analysis of the propagation behavior
of ultrasonic Love waves in functionally graded materials with the
monotonic change in the elastic properties as a function of distance
from the (treated) surface of the material is presented.

The problem of Love wave propagation in graded materials
are formulated as a Direct Sturm–Liouville Problem. Within
this Sturm–Liouville Problem, equations of motion of non-
homogeneous elastic medium with the appropriate boundary
conditions were formulated. Direct Sturm–Liouville Problem was
solved using two numerical methods, i.e., (1) Finite Difference
Method, and (2) Transfer Matrix Method (Haskell-Thompson). Dis-
persion curves (velocity versus frequency) of the phase and group
velocity of the Love wave propagating in the above mentioned
graded materials were evaluated, what is a novelty. Very good
agreement of dispersion curves obtained by these two numerical
methods was stated. The integral formula for the group velocity
of Love waves in nonhomogeneous elastic graded materials has
been established, which is a novelty.

These two numerical methods are equivalent if the number of
layers is relatively small (less than a few hundred). In contrast,
for a large number of layers (over one thousand) Transfer Matrix
Method is more efficient than Finite Difference Method. The effect
of elastic properties inhomogeneity on the dispersion curves of
Love waves was examined. It has been found that the profiles of
the elastic properties similar to the step profile (the typical profile
ic Love waves in nonhomogeneous elastic functionally graded materials,
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for classical Love wave propagating in a homogeneous layered
media) exhibit the best waveguide properties (i.e., the slope of
the dispersion curve is the highest). This is very important for
applications of Love waves in sensors (e.g., in the bio and
chemosensors and in sensors of physical properties of materials).

The results of this work may also find application in geophysics,
seismology and underground acoustics to investigate the internal
structure of Earth (crustal and subcrustal region near the Earth sur-
face). These results can be also applied in exploration of natural
resources (e.g., mineral oils, gases and minerals) [27]. Moreover,
Love waves may also be used to investigate planar optical waveg-
uides [28], and layered sensors and resonators of the MEMS (Micro
Electro Mechanical Systems) type [3,25].

The results obtained in this paper are fundamental and can pro-
mote a better understanding of the behavior of Love wave propa-
gating in elastic nonhomogeneous media (e.g., in functionally
graded materials and composites).

According to the authors’ knowledge the results obtained in this
work are original and have not been reported in the scientific
literature.
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[5] P. Kiełczyński, M. Szalewski, A. Balcerzak, A.J. Rostocki, D.B. Tefelski,
Applications of SH surface acoustic waves for measuring the viscosity of
liquids in function of pressure and temperatures, Ultrasonics 51 (2011) 921–
924.
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