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Abstract: The advent of elastic metamaterials at the beginning of the 21st century opened new venues
and possibilities for the existence of new types of elastic (ultrasonic) surface waves, which were
deemed previously impossible. In fact, it is not difficult to prove that shear horizontal (SH) elastic
surface waves cannot exist on the elastic half-space or at the interface between two conventional elastic
half-spaces. However, in this paper we will show that SH elastic surface waves can propagate at the
interface between two elastic half-spaces, providing that one of them is a metamaterial with a negative
elastic compliance s44(ω). If in addition, s44(ω) changes with frequency ω as the dielectric function
ε(ω) in Drude’s model of metals, then the proposed SH elastic surface waves can be considered
as an elastic analogue of surface plasmon polariton (SPP) electromagnetic waves, propagating at a
metal-dielectric interface. Due to inherent similarities between the proposed SH elastic surface waves
and SPP electromagnetic waves, the new results developed in this paper can be readily transferred
into the SPP domain and vice versa. The proposed new SH elastic surface waves are characterized
by a strong subwavelength confinement of energy in the vicinity of the guiding interface; therefore,
they can potentially be used in subwavelength ultrasonic imaging, superlensing, and/or acoustic
(ultrasonic) sensors with extremely high mass sensitivity.

Keywords: ultrasonic sensors; metamaterial elastic waveguides; negative elastic compliance; shear
horizontal (SH) elastic surface waves; SPP electromagnetic waves; phase and group velocity; complex
power flow; penetration depth; elastic-electromagnetic analogies

1. Introduction

Elastic surface waves that exist in solid waveguides seemingly have very little in
common with surface plasmon polariton (SPP) electromagnetic waves propagating in
metal-dielectric waveguides. However, with the advent of new elastic metamaterials, this
assertion must be revisited.

Indeed, one can argue that the invention of metamaterials was one of the most signifi-
cant events in physics at the turn of the XX and XXI centuries [1,2]. In fact, metamaterials
challenged many tacit assumptions and beliefs accumulated over decades about the prop-
erties of matter and wave motion herein. Combining basic research with a judicious engi-
neering design, researchers devised many new materials with unprecedented properties.
In the domain of elastic media, we observed the emergence of elastic metamaterials with a
negative mass density [3–5], anisotropic mass density [6], negative elastic constants [7,8],
etc. Not surprisingly, these new properties opened possibilities for the existence of new
types of acoustic waves, which were previously considered impossible.

To date, it has been commonly agreed that shear horizontal (SH) elastic surface waves
cannot exist at the interface between two elastic half-spaces [9]. In this study we challenge
the above assertion, showing that SH acoustic (ultrasonic) surface waves can efficiently
propagate at the interface between two elastic-half-spaces, providing that one of them is
elastic metamaterial with special properties, i.e., with a negative shear elastic compliance.

Inspired by the newly developed elastic metamaterials, we propose in this paper a new
type of shear horizontal (SH) elastic surface waves that were impossible in conventional
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elastic waveguides [9]. The new SH elastic surface waves can propagate at the interface
between two elastic half-spaces one of which is a metamaterial with a negative elastic
compliance s44(ω) < 0. If, in addition, the compliance s44(ω) changes with angular
frequency ω as the dielectric function ε(ω) in Drude’s model of metals, the proposed SH
elastic surface waves can be considered as direct elastic analogues of Surface Plasmon
Polariton (SPP) electromagnetic waves propagating at a metal-dielectric interface.

As a result, special attention was paid in this paper to similarities between the newly
proposed SH elastic surface waves and the electromagnetic surface waves of the surface
plasmon polariton (SPP) type, propagating at a dielectric-metal interface [10–12]. In fact,
SPP surface waves are transverse magnetic (TM) electromagnetic modes with only one
transverse component, namely the magnetic field H3 that is analogue of the SH particle
velocity v3 of the new proposed SH elastic surface wave. It is noteworthy that both types of
waves share one crucial property, i.e., very strong subwavelength decay in the transverse
direction away from the guiding interface x2 = 0, especially in the metal and elastic
metamaterial half-spaces.

Due to strong formal similarities between the SPP electromagnetic surface waves and
the new proposed SH elastic surface waves, most of the results obtained in this paper can
be transferred verbatim into the SPP domain by mutual substitution of the appropriate
symbols. However, a transition from the SPP domain into the SH elastic surface wave
domain can be very beneficiary for the latter due to a very large number of interesting
new phenomena observed already in the SPP domain, such as trapping of light (zero
group velocity) [13], transformational optics systems [14] or nonreciprocal and topological
waveguides [15], just to name a few. Therefore, the proposed new SH elastic surface
waves may open new fascinating possibilities to control wave phenomena occurring in
elastic solids.

The new SH elastic waves have the character of surface waves since they decay
exponentially in the direction of axis x2, perpendicular to the interface (x2 = 0) and
perpendicular simultaneously to the direction of propagation x1.

Another advantage of the proposed new SH elastic surface waves is the fact that they
have only one component of the mechanical displacement u3 (along axis x3), which is
completely uncoupled with the remaining components of mechanical vibrations, such as
longitudinal (L, along axis x1) and shear vertical (SV, along axis x2). Multimodal coupling
may be a significant problem in conventional bulk ultrasonic devices [16,17].

The proposed new SH elastic surface waves can have deep subwavelength penetration
depth, in both half-spaces of the waveguide, therefore they offer a potential for applications
in subwavelength acoustic imaging, superlensing, and/or acoustic sensors with extremely
large sensitivity, analogously to their SPP counterparts in electromagnetism. These are very
attractive properties of the newly discovered SH elastic surface waves.

The frequency range, in which the new SH elastic surface wave can propagate, cov-
ers practically the range from several kHz to several MHz. The maximum wave fre-
quency ωsp/2π depends on the resonant frequency of local resonators ωp and is given by
Formula (24) in Section 3.3. For example, when an exemplary waveguide structure depicted
in Section 2.1 consists of (1) the metamaterial half-space (x2 ≤ 0) composed of ST-Quartz
with embedded local resonators with a selected resonant frequency ωp/2π = 1 MHz
and (2) a conventional PMMA elastic half-space (x2 ≥ 0), the maximum frequency of the
new SH elastic surface waves equals approximately ωsp/2π = 143 kHz, according to the
Formula (24) in Section 3.3.

The proposed new SH elastic surface waves have a potential for very high resolution
(of the order of micrometers) using relatively low ultrasonic frequencies (of the order
of a few MHz). So far, using the conventional ultrasonic waves and imaging systems a
comparable resolution could be achieved using frequencies of the order of 1 GHz. Needless
to say, such a frequency range is still quite difficult to handle in ultrasonic practice.
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The concentration of the elastic energy near the guiding interface can be of crucial
importance in subwavelength acoustic imaging, acoustic energy harvesting as well as in
miniaturized modern ultrasonic devices at the micro and nano-scale.

Several analytical equations developed in this paper are new and have not yet been
published elsewhere. As a result, we hope that they can provide fresh physical insight into
the wave phenomena occurring in both domains, namely SPP electromagnetic waves and
SH elastic surface waves, proposed in this paper. For example, Equations (30), (33), (36)
and (37) that relate complex power flow with penetration depths in both half-spaces of the
waveguide, were to the best of our knowledge not yet published in the literature.

Due to their close similarity with the electromagnetic SPP waves the proposed new
ultrasonic waves are characterized by a large confinement of acoustic energy near the
surface. For this reason, these newly discovered SH acoustic waves can constitute the basis
of a new generation of acoustic (ultrasonic) sensors with a giant mass sensitivity.

The layout of this paper is as follows. Section 2.1 introduces the geometry and material
parameters of two half-spaces forming the metamaterial waveguide. Section 2.2 presents
the metamaterial half-space with a negative elastic compliance s(1)44 (ω) < 0. In Section 2.3
we derive a complete quantitative model of a metamaterial, whose elastic compliance
s44(ω) obeys the Drude relation. How to fabricate the elastic metamaterial with Drude-
like elastic compliance is discussed in Section 2.4. Mechanical displacement u3 and shear
stresses τ13, τ23 are subject to Section 3.1. Boundary conditions and the dispersion equation
of the new SH elastic surface waves are presented in Section 3.2. The analytical formula for
the wavenumber k(ω) was derived in Section 3.3. The formulas for the phase vp(ω) and
group vg(ω) velocities were developed, in Sections 3.4 and 3.5, respectively. The equations
for the penetration depth in both half-spaces of the waveguide are given in Section 3.6.
The net active power flow P1(ω), in the direction of propagation x1, was determined in
Section 3.7. The average reactive power flow P2(ω), in the transverse direction x2 was
analyzed in Section 3.8. The correspondence between SPP electromagnetic surface waves
and the proposed new SH elastic surface waves is outlined in Section 4. The results of
numerical calculations and the corresponding figures are presented in Section 5. The
discussion and conclusions are the subject of Sections 6 and 7, respectively.

2. Physical Model
2.1. Geometry and Material Parameters of the Waveguide

The geometry of the waveguide supporting new SH elastic surface waves is sketched
in Figure 1. The waveguide consists of two semi-infinite elastic half-spaces, one of which is
a conventional elastic material (x2 ≥ 0) and the second an elastic metamaterial (x2 < 0)
with a negative elastic compliance s(1)44 (ω) < 0, which is a function of angular frequency ω.
By contrast, the densities (ρ1, ρ2) > 0 in both half-spaces as well as the elastic compliance
s(2)44 > 0 in the conventional elastic material are positive and frequency independent (see
Figure 1).

Two elastic half-spaces, rigidly bonded at the interface x2 = 0, are uniform in the
direction x3, therefore all field variables of the new SH elastic surface wave will vary only
along the transverse direction x2, i.e., as a function of distance from the guiding interface
x2 = 0. It is assumed that both half-spaces of the waveguide are linear and lossless.
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waves is polarized along 𝑥ଷ axis. 
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Figure 1. Cross-section of the waveguide supporting the new proposed SH elastic surface waves,
propagating in the direction x1, with exponentially decaying fields in the transverse direction x2.
The conventional elastic half-space (x2 ≥ 0) is rigidly bonded to the metamaterial elastic half-space
(x2 < 0) at the interface x2 = 0. The mechanical displacement u3 of the new SH elastic surface waves
is polarized along x3 axis.

2.2. Elastic Drude-like Compliance s(1)44 (ω) in the Metamaterial Half-Space (x2 < 0)

The important assumption made throughout this paper is about the elastic compliance
s(1)44 (ω) in the metamaterial half-space (x2 < 0). Namely, it is assumed that s(1)44 (ω), as a
function of angular frequency ω, is given explicitly by the following formula:

s(1)44 (ω) = s0·
(

1 −
ω2

p

ω2

)
(1)

where: ωp is the angular frequency of the local mechanical resonances of the metamaterial
and s0 is its reference elastic compliance for ω → ∞ .

It is not difficult to notice that the elastic compliance s(1)44 (ω) given by Equation (1), is
formally identical to the dielectric function ε(ω) in Drude’s model of metals [18], in which
the angular frequency ωp is named the angular frequency of bulk plasma resonance [19].

Similarly, the density ρ1 of the metamaterial half-space (x2 < 0) corresponds to the
magnetic permeability µ in Drude’s model of metals.

The second elastic half-space (x2 < 0) is a conventional elastic material with a positive
compliance s(2)44 > 0 and density ρ2 > 0 that are both frequency independent.

In the following of this paper, it is assumed that the elastic compliance s(1)44 (ω) in the
metamaterial half-space (x2 < 0) is given by Equation (1), which is an exact analogue to the
dielectric function ε(ω) in Drude’s model of metals. This assumption not only simplifies
further analysis but also provides us with a full analogy with the SPP electromagnetic
waves propagating at a metal–dielectric interface. Therefore, the results obtained in the SPP
domain may be almost automatically transferred to the SH elastic domain and vice versa.

2.3. Quantitative Model of the Elastic Metamaterial with a Drude-like Elastic Compliance

To develop a quantitative model for elastic metamaterials with the Drude-like elastic
compliance s(1)44 (ω), described by Equation (1), we will consider a number of electrome-
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chanical analogies based on the close affinity between the new SH elastic surface waves
and the SPP electromagnetic modes propagating at a metal–dielectric interface.

The correspondence between the new SH elastic surface waves and the SPP electro-
magnetic waves stems from the fact that they share formally identical mathematical models,
derived from the first physical principles. Namely, from the equations of motion (second
Newton’s law) governing the behavior of an elastic continuum with parameters s44 and
ρ and Maxwell’s electromagnetic equations determining behavior of an electromagnetic
continuum with parameters ε and µ.

The correspondence between the dielectric permeability and magnetic permeability
and shear modulus and density can be expressed as follows: ε ⇔ s44 and µ ⇔ ρ . In
Section 4, we compare the properties of the new SH elastic surface waves and electromag-
netic surface waves of the SPP type.

Consequently, the mathematical formulas that we can prove in the domain of the SPP
electromagnetic waves using ε and µ can be automatically transferred to the domain of the
new SH elastic surface waves, which employs s44 and ρ.

We begin our analysis by proposing a one-dimensional model of a mechanical res-
onator with the elastic properties described by the equation analogous to the dielectric
function ε(ω) in Drude’s model of metals.

It is assumed that the one-dimensional mechanical resonator shown in Figure 2 per-
forms shear vibrations and consists of an elastic spring with a compliance C0 connected in
series with mass m.
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Figure 2. Spring-mass model of a mechanical resonator, whose effective shear elastic constant
Ce f f (ω), as a function of the angular frequency ω, is formally identical to the dielectric function
ε(ω) in Drude’s model of metals. F(ω), q(ω) and v(ω) = jωq(ω) correspond, respectively, to the
mechanical force, mechanical displacement, and acoustic velocity.

2.3.1. Equivalent Circuit Representation of the Mechanical Resonator Shown in Figure 2

The mechanical resonator given in Figure 2 can be represented by equivalent me-
chanical and electrical circuits with lumped elements C0 and m (Figure 3a) and Ce and L
(Figure 3b).

The mechanical equivalent circuit shown in Figure 3a is governed by the equation
of motion resulting from Newton’s second law of dynamics. However, the mechanical
equivalent circuit shown in Figure 3a has its electric counterpart in the domain of electric
circuits (see Figure 3b). Consequently, in the analysis of the mechanical equivalent circuit
(Figure 3a) we can employ the methods and notions already developed in the theory
of electric circuits, such as e.g., impedance or admittance. In particular, the mechanical
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admittance of the mechanical equivalent circuit, defined in the frequency ω domain as
Y(ω) = v(ω)/F(ω), can be written as:

Y(ω) = jωC0 +
1

jωm
= jωC0

(
1 −

ω2
0

ω2

)
(2)

where ω0 = 1/
√

mC0 is the resonant frequency of the mechanical resonator.
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Figure 3. Mechanical (a) and electrical (b) equivalent circuits of the mechanical resonator presented
in Figure 2. v(ω), F(ω), C0 and m represent, respectively, the acoustic velocity, mechanical force, and
elastic compliance of the spring and mass. Similarly, I(ω), V(ω), Ce and L represent, respectively,
the electric current, voltage, capacitance, and inductance.

Equation (2) shows that the overall behaviour of the mechanical resonator shown in
Figure 2 can be expressed in terms of a resulting shear compliance Ce f f (ω) represented by
a lumped element (spring) in Figure 4.
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Figure 4. Equivalent lumped elastic compliance Ce f f (ω) representing an overall behavior of the
mechanical resonator from Figure 2.

By virtue of Equation (2), the equivalent lumped elastic compliance Ce f f (ω) shown in
Figure 4 is given by the following formula:

Ce f f = C0

(
1 −

ω2
0

ω2

)
(3)

The effective lumped (shear) elastic compliance Ce f f (ω) is negative in the frequency
range (0−ω0), in which it grows monotonically from −∞ to 0. It means that the mechanical
velocity v(ω) lags in phase with respect to the driving mechanical force F(ω) by 180◦.

Comparing Equation (3) with Equation (1), it is clear that the effective shear elastic
compliance Ce f f (ω) of the discrete representation of the mechanical resonator shown in
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Figure 2 and the elastic compliance s(1)44 (ω) of the metamaterial elastic continuum (x2 < 0)
given by Equation (1) (Drude’s model) share the same frequency dependence, if ω0 is
replaced by ωp. This is a very encouraging result since we are now in a position to propose
an elementary cell (local oscillator) which constitutes the basis (microstructure) for the
design of the elastic metamaterial continuum with a Drude-like elastic compliance s(1)44 (ω),
described by Equation (1).

In the development of a quantitative model of the elastic continuum with a Drude-
like elastic compliance s(1)44 (ω), it is prerequisite to identify the elementary cell of local
oscillators embedded in the considered elastic host continuum.

2.3.2. Unit Cell of Local Mechanical Resonators with SH Polarization

As a unit cell that can be used as a local resonator, we choose the following structure,
see Figure 5:
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Figure 5. Proposed physical model of a local mechanical resonator with SH polarization embedded
in an elastic host material.

The proposed local resonator, embedded in a host elastic material, consists of a sphere
of mass m connected to two microcantilevers, which act as a spring with an effective com-
pliance C0/2. It is assumed that the local resonator can vibrate only along the SH direction
perpendicular to the line connecting the mass m with the cantilevers and perpendicular to
the plane of Figure 5. As a result, the proposed local resonator can interact only with an SH
wave propagating in the host material.

The elastic compliance of the microcantilever is given by the following formula:
C0 = 4L3/Ywt3, where L, w, t and Y stand, respectively, for the length, width, height, and
Young’s modulus of the considered microcantilever. Consequently, the resonant frequency
of the proposed local resonator equals ω0 =

√
2/mC0.

2.3.3. Elastic Continuum with a Drude-like Elastic Compliance

The analytical formula for the average mechanical energy WM(ω) stored in the me-
chanical resonator represented by the discrete mechanical circuit shown in Figure 3a equals:

WM(ω) =
1
4

(
1 +

ω2
0

ω2

)
C0|F|2 (4)

Up to now, we are still in the domain of the lumped element circuit theory. However,
we are going now to perform the first crucial step by transferring the results obtained in
the discrete 1-D circuit domain to the 3-D domain of the metamaterial continuum.

Indeed, in analogy to Equation (4) we are in a position to show that the average
mechanical energy density wM(ω) stored in the corresponding elastic continuum equals:

wM(ω) =
1
4

(
1 +

ω2
0

ω2

)
s0|τ23|2 (5)
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where: s0 is the elastic compliance of the corresponding elastic continuum, τ23 is the shear
stress equal to τ23 = F/A and F is the shear force acting on the surface A of the local
oscillator, see Figure 6.
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Figure 6. Schematic representation of an elementary shear resonator. The shear force F is acting on
the appropriate surface A.

Therefore, the mechanical energy WM stored in the reference volume V (shown in
Figure 7) in the elastic metamaterial equals:

WM(ω) =
1
4

(
1 +

ω2
0

ω2

)
se f f

0 |τ23|2V =
1
4

(
1 +

ω2
0

ω2

)
n·C0|F|2 (6)

where: n is the number of local shear resonators contained in the reference volume V (see
Figure 7). The coefficient (s0)

e f f in Equation (6) represents the average value of the elastic
compliance of the resulting 3-D elastic metamaterial continuum.
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Figure 7. A model of an elastic metamaterial with a Drude-like dependence of elastic compliance

s(1)44 (ω) on the angular frequency ω. A set of n local mechanical oscillators is embedded into the host
continuum material in the reference volume V. The snippet on the right side shows details of the
local resonator presented in more detail in Section 2.3.2.

Now we are going to perform the second crucial step in our development of the
quantitative model of the elastic continuum with a Drude-like elastic compliance. This
time, we will use the equation developed in the electromagnetic domain by V.L. Ginzburg
in [20] for the energy density of the electromagnetic continuum, whose material parameters
are dispersive, i.e., they change with the angular frequency ω.

Indeed, using Equation (5) and transferring the electromagnetic equation B.2.5 from
reference [20] into the domain of elastodynamics we obtain:

d
dω

(
ω

s44(ω)

se f f
0

)
=

(
1 +

ω2
0

ω2

)
(7)

In the derivation of Equation (7) we employed the correspondence between the dielec-
tric function ε(ω) and elastic compliance s44(ω), shown in Section 4.
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At this moment we are almost done. To obtain a quantitative model of the elastic
continuum with a Drude-like elastic compliance we need to perform only a few technical
steps. At first, we will integrate Equation (7) over ω arriving at the following formula:

s44(ω)

se f f
0

=

(
1 −

ω2
0

ω2

)
(8)

It is not difficult to note that Equation (8) is exactly Drude’s relation describing the
elastic compliance s44(ω) of the resulting elastic metamaterial continuum as a function of
angular frequency ω (see Equation (1) in Section 2.1).

In the last technical step, we must relate the averaged value of the effective elastic
compliance se f f

0 of the resultant elastic metamaterial continuum with the parameters of
embedded elementary resonators in an elastic host material.

In fact, since the shear stress |τ23|, acting on an elementary resonator with the surface
A (see Figure 6), equals |τ23| = |F|/A, by virtue of Equation (6) we can write the following:

se f f
0 =

nC0|F|2

|τ23|2V
=

nC0 A2

V
(9)

Now we have all the necessary elements to present our final model of an elastic
metamaterial with a Drude-like elastic compliance s44(ω), see Figure 7 below.

2.4. Fabrication of the Elastic Metamaterial with a Drude-like Elastic Compliance s44(ω)

Elastic metamaterial with a Drude-like elastic compliance in a certain frequency range
was already proposed in [21]. The unit cell of the proposed metamaterial was composed of
four tungsten rods with four adjacent vacuum cavities embedded in a host foam. A circular
vacuum cavity was placed in the center of the unit cell. Negative elastic compliance was
due to the quadrupolar resonance occurring in the unit cell The negativity of the elastic
compliance s(1)44 (ω) was confirmed by the corresponding FEM calculations. The elastic
compliance of the metamaterial had some characteristics of Drude’s model but was by no
means described by the analytical formula given by Equation (1).

In the following, we have included numerical data for material parameters of the
elementary mechanical oscillator shown in Figure 8 as well as the resulting resonant
frequency f0 and effective mechanical compliance (s0)

e f f .
Numerical example:
As a unit cell that can be used as a local resonator, we can choose the following

structure, see Figure 8:

Sensors 2023, 23, x FOR PEER REVIEW 10 of 25 
 

 

 
Figure 8. Practical realization of the proposed local mechanical resonator with SH polarization em-
bedded in an elastic host material. 

Effective elastic compliance 𝐶଴  of the cantilever shown in Figure 8, treated as a 
spring, can be expressed as: 𝐶଴ = 4𝐿ଷ 𝑌𝑤𝑡ଷ⁄  : where: 𝐿  = length, 𝑤  = width, 𝑡  = height 
and 𝑌 = Young’s modulus.  

Material parameters of the cantilever shown in Figure 8 were chosen as follows:  𝐿 = 5 mm, 𝑤 = 3 mm, 𝑡 = 1 mm and 𝑌 = 100 GPa: (Bronze).  
Reference Volume 𝑉 was assumed as: = 2 × 10ିହ mଷ.  
Surface 𝐴 of the elementary shear resonator from Figure 6 equals 𝐴 = 10 mmଶ.  
The number of local resonators 𝑛 in the reference volume 𝑉 is equal to 𝑛 = 200.  
The mass of the sphere is: = 10ିହ kg: (Tin-lead alloy).  
Employing the above set of parameters, we get: 𝐶଴ = ଵ଼ 10ିହ  ቂ୫୒ቃ  ; 𝐴ଶ 𝑉 = ଵଶ 10ିହൗ  ሾmሿ.  
The resonant frequency of the local resonator amounts to 𝑓଴ = ଵଶగ ∙ ඥ2 𝑚𝐶଴⁄ ≈ 21 kHz. 

As a host material, we can choose one of the plastics, for example: Nylon PA-6.  
Finally, the effective elastic compliance equals: (𝑠଴)௘௙௙ = 𝑛 ∙ 𝐶଴ ∙ 𝐴ଶ 𝑉⁄ ≈ 6 ∙10ିଵ଴ ሾmଶ N⁄ ሿ.  
Ultrasonic waves in the considered frequency range (e.g., 50 KHz) can be generated 

and received using standard ultrasonic transducers operating in a conventional experi-
mental setup consisting of a pulser-receiver, a measuring head with ultrasonic transduc-
ers, and a control electronic unit (PC computer).  

The velocity of ultrasonic waves can be determined, using the above experimental 
setup, from measurements of the time-of-flight (TOF) between the selected ultrasonic im-
pulses. In the precise determination of the time of flight and therefore the velocity of ul-
trasonic waves, we can employ the cross-correlation method, which can be effectively im-
plemented digitally within the controlling PC computer.  

It should be noted that the new SH elastic surface waves can also propagate in an-
other class of elastic waveguides, in which the elastic compliance 𝑠ସସ(ଵ)(𝜔)  of the met-
amaterial half-space is described by an analytical formula different that the Drude’s for-
mula, given by Equation (1). Namely, the analysis performed in the submitted manuscript 
will be also valid (after some modifications) when the elastic compliance 𝑠ସସ(ଵ)(𝜔) fulfils 
the following 2 conditions:  

1. elastic compliance 𝑠ସସ(ଵ)(𝜔) is negative and increases monotonically in the frequency 
range 𝜔ଵ < 𝜔 < 𝜔ଶ,  

and  

2. elastic compliance 𝑠ସସ(ଵ)(𝜔) equals zero for the frequency 𝜔 = 𝜔ଶ.  

Figure 8. Practical realization of the proposed local mechanical resonator with SH polarization
embedded in an elastic host material.
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Effective elastic compliance C0 of the cantilever shown in Figure 8, treated as a spring,
can be expressed as: C0 = 4L3/Ywt3: where: L = length, w = width, t = height and
Y = Young’s modulus.

Material parameters of the cantilever shown in Figure 8 were chosen as follows:
L = 5 mm, w = 3 mm, t = 1 mm and Y = 100 GPa: (Bronze).
Reference Volume V was assumed as: = 2 × 10−5 m3.
Surface A of the elementary shear resonator from Figure 6 equals A = 10 mm2.
The number of local resonators n in the reference volume V is equal to n = 200.
The mass of the sphere is: = 10−5 kg: (Tin-lead alloy).
Employing the above set of parameters, we get: C0 = 1

8 10−5 [m
N
]
; A2/V = 1

2 10−5 [m].
The resonant frequency of the local resonator amounts to f0 = 1

2π ·
√

2/mC0 ≈ 21 kHz.
As a host material, we can choose one of the plastics, for example: Nylon PA-6.

Finally, the effective elastic compliance equals: (s0)
e f f = n·C0·A2/V ≈ 6·10−10 [m2/N

]
.

Ultrasonic waves in the considered frequency range (e.g., 50 KHz) can be generated
and received using standard ultrasonic transducers operating in a conventional experimen-
tal setup consisting of a pulser-receiver, a measuring head with ultrasonic transducers, and
a control electronic unit (PC computer).

The velocity of ultrasonic waves can be determined, using the above experimental
setup, from measurements of the time-of-flight (TOF) between the selected ultrasonic
impulses. In the precise determination of the time of flight and therefore the velocity of
ultrasonic waves, we can employ the cross-correlation method, which can be effectively
implemented digitally within the controlling PC computer.

It should be noted that the new SH elastic surface waves can also propagate in another
class of elastic waveguides, in which the elastic compliance s(1)44 (ω) of the metamaterial
half-space is described by an analytical formula different that the Drude’s formula, given
by Equation (1). Namely, the analysis performed in the submitted manuscript will be also
valid (after some modifications) when the elastic compliance s(1)44 (ω) fulfils the following
2 conditions:

1. elastic compliance s(1)44 (ω) is negative and increases monotonically in the frequency
range ω1 < ω < ω2,

and

2. elastic compliance s(1)44 (ω) equals zero for the frequency ω = ω2.

As an example of the elastic compliance s(1)44 (ω) that satisfies the above two conditions
we can invoke a Lorentz-like function implying the following formula:

s(1)44 (ω) = s0

(
1 − ω2

0
ω2−ω2

1

)
. All analytical equations developed in the submitted manuscript

will be valid (after some modifications) for the Lorentz-like elastic compliance s(1)44 (ω).
Similar can be said about figures presented in Section 5 which will be different, but they
will preserve anyway their qualitative properties. However, besides some complications
the Lorentz-like elastic compliance does not bring important new phenomena, which are
not already present in the Drude-like model.

Therefore, for the sake of simplicity and possible comparison with the SPP electromag-
netic waves, which are commonly analyzed with the dielectric function ε(ω) of the Drude
type, in the submitted manuscript we assumed that the elastic compliance s(1)44 (ω) in the
metamaterial half-space is described by the Drude-like Equation (1).

The elastic metamaterial with a Drude-like elastic compliance, described by Equation (1)
may be fabricated using 3-D printers and dip-in direct-laser-writing optical lithography [22].
This activity will be the subject of the author’s future works.
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3. Mathematical Model

3.1. Mechanical Displacement u(i)
3 (x2) and Stresses τ

(i)
23 (x2), τ

(i)
13 (x2)

Since new SH elastic surface waves are time-harmonic, propagate in the direction x1

and are uniform along the transverse direction x3, their mechanical displacement u(i)
3 , in

both half-spaces (i = 1, 2) shown in Figure 1, will be sought in the following generic form:

u(i)
3 = u(i)

3 (x2)exp[j(k·x1 − ωt)] (10)

where u(i)
3 (x2) expresses variations of the mechanical displacement in the transverse direc-

tion x2, k is the wavenumber of the new SH elastic surface wave and ω its angular frequency.
The mechanical displacement u(i)

3 in both half-spaces of the waveguide is governed
by the wave equation, resulting from the second Newton’s law, which with the help of
Equation (10) reduces to the second order ordinary differential equation of the Helmholtz
type [23]: [

d2

dx2
+ k2

i

]
·u(i)

3 (x2) = k2·u(i)
3 (x2) (11)

where ki = ω/vi is the wavenumber of SH bulk waves in both elastic half-spaces number
i = 1, 2. In the conventional elastic half-space (i = 2) the wavenumber k2

2 = ω2s(2)44 ρ2 is

positive and in the metamaterial half-space (i = 1) the wavenumber k2
1 = −ω2

∣∣∣s(1)44

∣∣∣ρ1 is
always negative in the angular frequency range 0 < ω ≤ ωp.

Since the mechanical displacement u(i)
3 (x2) of the new SH elastic surface wave must

vanish at large distances from the guiding interface x2 = 0, namely for x2 → ±∞ , the
solution of the Helmholtz Equation (11) will be sought in the following form:

u(i)
3 (x2) = Cie±qix2 (12)

where Ci (i = 1, 2) are arbitrary amplitude coefficients and the transverse wave numbers
qi are real (waveguide is lossless) and according to the Helmholtz Equation (11) is given

by qi =
√(

k2 − k2
i
)
, where ki = ω

√
s(i)44 ρi are wavenumbers of bulk SH waves in the

metamaterial half-space x2 < 0 (i = 1) and conventional elastic half-space x2 ≥ 0 (i = 2).
In the following of this paper, we will use two shear stresses of the new SH elastic

surface wave, namely τ
(i)
23 and τ

(i)
13 that are defined, respectively, as:

τ
(i)
23 =

(
1/s(i)44

)
∂u(i)

3 /∂x2 and τ
(i)
13 =

(
1/s(i)44

)
∂u(i)

3 /∂x1.

Consequently, we can write the following formulas:

u(i)
3 (x2) = Ci·exp(±qix2) (13)

τ
(i)
23 (x2) =

1

s(i)44

Ci·(±qi)·exp(±qix2) (14)

τ
(i)
13 (x2) =

1

s(i)44

Ci·jk·exp(±qix2) (15)

τ
(i)
23 (x2) =

1

s(i)44

Ci·(±qi)·exp(±qix2) (16)

where the index i = 1, 2.
To provide an exponential decay of u(i)

3 (x2), τ
(i)
23 (x2) and τ

(i)
13 (x2) the transverse

wavenumber qi in Equations (13)–(16) have to be preceded by sign − in the convention
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elastic half-space (x2 ≥ 0) and by sign + in the metamaterial half-space (x2 < 0), since qi
(i = 1, 2) in Equations (13)–(16) are real and positive.

3.2. Boundary Conditions and Dispersion Equation

From physical considerations it is obvious that the mechanical displacement u(i)
3 (x2)

and the shear stress τ
(i)
23 (x2) must be continuous at the interface x2 = 0, namely:

u(1)
3 (x2 = 0) = u(2)

3 (x2 = 0) (17)

τ
(1)
23 (x2 = 0) = τ

(2)
23 (x2 = 0) (18)

Substituting Equations (13) and (14) into boundary conditions, Equations (17) and
(18), one obtains two linear homogeneous algebraic equations for two unknown amplitude
coefficients C1 and C2, namely:

C1 = C2 (19)

C1
q1

s(1)44 (ω)
= −C2

q2

s(2)44

(20)

Combining Equations (19) and (20), we get the following dispersion equation for the
new SH elastic surface waves: q1

−s(1)44 (ω)
=

q2

s(2)44

(21)

The sign “−” before the compliance −s(1)44 (ω) plays a crucial role in the analysis of new
SH elastic surface waves, since it implies that if the transverse wavenumbers q1 and q2 are
positive, the elastic compliances s(1)44 (ω), s(2)44 must be of the opposite sign s(1)44 (ω)·s(2)44 < 0.

Consequently, if the elastic compliance s(1)44 (ω) (see Equation (1)) in the metamaterial

half-space is negative for ω < ωp, the compliance s(2)44 have to be positive (see Figure 1).
Since C1 = C2 (see Equation (19)) in the following of this paper we will use only one

amplitude coefficient, denoted as C = C1 = C2.

3.3. Wavenumber k(ω)

Substituting Equation (16), for transverse wavenumbers q1 and q2, in the dispersion
relation Equation (21), one obtains the following formula for the wavenumber k(ω) of the
new SH elastic surface wave:

k(ω) = k2

√√√√ s(1)44 (ω)

s(1)44 (ω) + s(2)44

√√√√√ s(2)44
ρ1
ρ2

− s(1)44 (ω)

s(2)44 − s(1)44 (ω)
(22)

where the wavenumber of bulk SH waves in the conventional elastic half-space

k2 = ω

√
s(2)44 ρ2.

Since the wavenumber k(ω) of the new SH elastic surface wave must be real and
positive, Equation (22) imposes the following two necessary conditions on s(1)44 (ω) and s(2)44 :(

s(1)44 (ω) < 0
)

and
(

s(1)44 (ω) + s(2)44

)
< 0 (23)

The first condition requires that ω < ωp and the second gives rise to ω < ωsp, where
the cut-off angular frequency ωsp and the angular frequency of local resonances ωp are
related by:

ωsp = ωp/

√
s(2)44
s0

+ 1 (24)
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Since ωp is always higher than ωsp (ωp > ωsp), the two conditions given by Equation
(23) imply that the frequency ω of the new SH elastic surface wave must be limited to the
range 0 < ω < ωsp.

In the context of the SPP electromagnetic surface waves, the angular frequency ωsp is
called the surface plasmon resonance frequency [19].

3.4. Phase Velocity vp(ω)

Since by definition k(ω) = ω/vp(ω), the analytical formula for the phase velocity
vp(ω) of new SH elastic surface waves results immediately from Equation (22):

vp(ω) = v2

√√√√ s(1)44 (ω) + s(2)44

s(1)44 (ω)

√√√√√ s(2)44 − s(1)44 (ω)

s(2)44
ρ1
ρ2

− s(1)44 (ω)
(25)

where v2 = 1/
√

s(2)44 ρ2 is the phase velocity of bulk SH waves in the conventional
elastic half-space.

3.5. Group Velocity vg(ω)

Differentiation of Equation (22) for the wavenumber k(ω), with respect to the angular
frequency ω, leads to the following formula for the group velocity vg(ω) = dω/dk of the
new SH surface wave:

vg(ω)
v2

vp(ω)
v2

=[[
s(2)44

]2
−
[
s(1)44 (ω)

]2
]2

s(1)44 (ω)
[

ρ1
ρ2

s(2)44 −s(1)44 (ω)
][[

s(2)44

]2
−
[
s(1)44 (ω)

]2
]
+ ω

2
ds(1)44 (ω)

dω

[
ρ1
ρ2

[[
s(2)44

]2
+
[
s(1)44 (ω)

]2
]
−2s(1)44 (ω)s(2)44

] (26)

Despite its relative complexity, Equation (26) is quite elementary and can be easily
implemented in numerical calculations.

3.6. Penetration Depths δ1(ω), δ2(ω) in Both Half-Spaces of the Waveguide

The penetration depth in the metamaterial half-space x2 < 0 is defined as

δ1(ω) = 1/q1(ω), where the transverse wave number q1(ω) =
√

k2 − k2
1 (see Equation

(16)) and k2
1 = ω2s(1)44 (ω)ρ1. Similarly, in the conventional elastic half-space x2 ≥ 0 we have

δ2(ω) = 1/q2(ω), where the transverse wavenumber q2(ω) =
√

k2 − k2
2 (see Equation (16))

and k2
2 = ω2s(2)44 (ω)ρ2.

Consequently, substituting Equation (22) for the wavenumber k into Equation (16) for
the transverse wavenumbers q1 and q2 and noting that λ = 2π/k, one obtains:

δ1(ω) =
λ

2π

√√√√√ s(2)44

[
−s(1)44 (ω) + s(2)44

ρ1
ρ2

]
−s(1)44 (ω)

[
s(2)44 − s(1)44 (ω)

ρ1
ρ2

] (27)

δ2(ω) =
λ

2π

√√√√√−s(1)44 (ω)
[
−s(1)44 (ω) + s(2)44

ρ1
ρ2

]
s(2)44

[
s(2)44 − s(1)44 (ω)

ρ1
ρ2

] (28)

where λ is the wavelength of the new SH elastic surface wave.
In general, the ratio of the penetration depths δ1(ω), δ2(ω) is expressed by the dis-

persion equation (Equation (21)), i.e., δ2(ω)/δ1(ω) = −s(1)44 (ω)/s(2)44 that is independent
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on ρ1/ρ2. On the other hand, by virtue of Equations (27) and (28), the product of the
normalized penetration depths equals:

δ1(ω)

λ
· δ2(ω)

λ
=

(
1

2π

)2 −s(1)44 (ω) + s(2)44
ρ1
ρ2

s(2)44 − s(1)44 (ω)
ρ1
ρ2

(29)

However, if the density in both half-spaces of the waveguide is the same (ρ1 = ρ2)
then Equation (29) reduces to:

δ1(ω)

λ
· δ2(ω)

λ
=

(
1

2π

)2
(30)

Thus, if the density in both half-spaces of the waveguide is identical (ρ1 = ρ2) the
product of the normalized penetration depths δ1(ω)δ2(ω)/λ2 is independent of angular
frequency ω and material constants of the waveguide and equals (1/2π)2 ≈ 0.025. In other
words, if ρ1 = ρ2 both normalized penetration depths δ1(ω)/λ, δ2(ω)/λ are inversely
proportional. As a result, if δ1(ω)/λ increases then δ2(ω)/λ decreases accordingly to
Equation (30) and vice versa. Simultaneously, if the angular frequency ω → ωsp then both
δ1(ω)/λ and δ2(ω)/λ are subwavelength and tend to the same value 1/2π.

3.7. Net Active Power Flow P(1)
1 (ω), P(2)

1 (ω) in the Direction of Propagation x1

The complex Poynting vector P(i)
1 (x2), in the direction of propagation x1, of new SH

elastic surface waves can be expressed as P(i)
1 (x2) = − 1

2

[
τ
(i)
13 (x2)·

(
−jωu(i)

3 (x2)
)∗]

, where

u(i)
3 (x2) is the mechanical displacement (Equation (5)) and τ

(i)
13 (x2) is the mechanical stress

(Equation (15)), where i = 1, 2.
Similarly, the net complex power flow (per unit length along the axis x3) in the

metamaterial half-space (x2 < 0) is defined as P(1)
1 (ω) =

∫ 0
−∞ P(1)

1 (x2)dx2 (see Figure 1)

and in the conventional elastic half-space (x2 ≥ 0) by P(2)
1 (ω) =

∫ ∞
0 P(2)

1 (x2)dx2.
Consequently, using Equations (13) and (15), it can be shown that the net complex

power flows P(1)
1 (ω) and P(2)

1 (ω) in both half-spaces of the waveguide are given by:

P(1)
1 (ω) = −1

4
|C|2 k(ω)ω

−s(1)44 (ω)q1(ω)
(31)

P(2)
1 (ω) =

1
4
|C|2 k(ω)ω

s(2)44 q2(ω)
(32)

where C is an arbitrary amplitude coefficient.
It should be noticed that all field variables entering Equations (31) and (32) are real.

Therefore, the power flows P(1)
1 (ω) and P(2)

1 (ω) in both half-spaces of the waveguide are
active. In other words, new SH elastic surface waves can effectively transfer the active
power along the guiding interface x2 = 0 in the direction of propagation x1.

Employing the dispersion Equation (21) in conjunction with Equations (31) and (32),
the ratio of the net active powers flows P(1)

1 (ω)/P(2)
1 (ω) in both half-spaces of the waveg-

uide is given by the following:

P(1)
1 (ω)

P(2)
1 (ω)

=
s(2)44

s(1)44 (ω)

q2(ω)

q1(ω)
= −

[
δ1(ω)

δ2(ω)

]2
(33)

Note that the ratio of the net active power flows in both half-spaces is always negative,
since s(1)44 (ω) and s(2)44 are of the opposite sign and the transverse wavenumbers are real
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and positive q1(ω), q2(ω) > 0. Consequently, P(1)
1 (ω) and P(2)

1 (ω) propagate in opposite
directions along axis x1.

3.8. Average Reactive Power Flow P(1)
2 (ω), P(2)

2 (ω) in the Transverse Direction x2

The complex Poynting vector P(i)
2 (x2), in the transverse direction x2, of new SH

elastic surface waves can be expressed as P(i)
2 (x2) = − 1

2

[
τ
(i)
23 (x2)·

(
−jωu(i)

3 (x2)
)∗]

, where

u(i)
3 (x2) is the mechanical displacement (Equation (13)) and τ

(i)
23 (x2) is the mechanical stress

(Equation (14)), where i = 1, 2.
Similarly, the average complex power flow (per unit length along the axis x3) in the

metamaterial half-space (x2 < 0) is defined as P(1)
2 (ω) =

∫ 0
−∞ P(1)

2 (x2)dx2 (see Figure 1)

and in the conventional elastic half-space (x2 ≥ 0) by P(2)
2 (ω) =

∫ ∞
0 P(2)

2 (x2)dx2.
Consequently, using Equations (13) and (14) it can be shown that the average complex

power flow P(1)
2 (ω) and P(2)

2 (ω) in both half-spaces are given by:

P(1)
2 (ω) = +j

ω

4
|C|2 1

−s(1)44 (ω)
(34)

P(2)
2 (ω) = +j

ω

4
|C|2 1

s(2)44

(35)

Thus, if ω → 0 then P(1)
2 (ω) and P(2)

2 (ω) both tend to zero. On the other hand, if

ω → ωsp then P(2)
2 (ω) and P(1)

2 (ω) tend to the same value, namely j
(
ωsp/4

)
|C|2/s(2)44 .

Since the elastic compliance s(1)44 (ω) is negative, in the frequency range 0 < ω < ωsp,

the average reactive power flows P(1)
2 (ω), P(2)

2 (ω), in both half-spaces, are both posi-
tive (+) and correspond to the inductive type of the reactive power, in analogy to SPP
electromagnetic waves.

Using Equation (1) together with Equations (34) and (35), the ratio of the average
reactive power flows in both half-spaces can be written as:

P(1)
2 (ω)

P(2)
2 (ω)

= −
s(2)44

s(1)44 (ω)
=

δ1(ω)

δ2(ω)
(36)

Comparing Equations (33) and (36), one obtains a rather unexpected relation between
the net active power flows P(1)

1 (ω), P(2)
1 (ω) in the direction of propagation x1 and the

average reactive power flows P(1)
2 (ω), P(2)

2 (ω) in the transverse direction x2, namely:

P(1)
1 (ω)

P(2)
1 (ω)

= −
[

P(1)
2 (ω)

P(2)
2 (ω)

]2

(37)

Thus, if the ratio of the net active power flows P(1)
1 (ω)/P(2)

1 (ω) increases, say 4 times,

the ratio of the average reactive power flow P(1)
2 (ω)/P(2)

2 (ω) grows only 2 times, etc.

In other words, repartition of the net active power flow (P(1)
1 (ω), P(2)

1 (ω)) between two
half-spaces of the waveguide is much more sensitive to changes in the penetration depths
δ1(ω)/λ and δ2(ω)/λ than that of the average reactive power flow (P(1)

2 (ω), P(2)
2 (ω)) in

the transverse direction x2.
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4. Correspondence between the SPP Electromagnetic Waves and the Proposed New SH
Elastic Surface Waves

As it was stated before, the proposed new SH elastic surface waves can be considered
an elastic analogue of the SPP electromagnetic surface waves propagating at a metal–
dielectric interface. In fact, the mathematical models of both types of waves are formally
identical. Therefore, it will be advantageous to identify explicitly the corresponding
field variables in both domains, since the results obtained in one domain can be directly
transferred to the other domain, alleviating thereby tedious from scratch derivations of the
resulting analytical formulas (see Table 1).

Table 1. Correspondence between field variables of the SPP electromagnetic waves propagating
in metal–dielectric waveguides and the proposed new SH elastic surface waves propagating in
metamaterial waveguides.

No
SPP Electromagnetic Surface Waves in Metal–Dielectric

Waveguides
New SH Elastic Surface Waves in Metamaterial

Waveguides

Property Implementation Implementation Property

1 Longitudinal electric field E1 τ23
Shear horizontal SH

mechanical stress

2 Transverse electric field E2 τ13 Shear mechanical stress

3 transverse magnetic field H3 v3 = −jωu3
SH particle velocity

v3 = ∂u3/∂t

4 Dielectric function in metal ε1(ω) s(1)44 (ω)
Elastic compliance in

metamaterial half-space

5 Dielectric function in
dielectric ε2 s(2)44

Elastic compliance in
conventional half-space

6 Magnetic permeability in
metal µ1 ρ1

Density of metamaterial
half-space

7 Magnetic permeability in
dielectric µ2 ρ2

Density of conventional
half-space

8 Wavenumber for
µ1/µ2 = 1 k(ω) = k2

√
ε1(ω)

ε1(ω)+ε2
k(ω) = k2

√
s(1)44 (ω)

s(1)44 (ω)+s(2)44

Wavenumber for
ρ1/ρ2 = 1

9 Phase velocity of SPP
electromagnetic waves vp(ω) = v2

√
ε1(ω)+ε2

ε1(ω) vp(ω) = v2

√
s(1)44 (ω)+s(2)44

s(1)44 (ω)

Phase velocity of new SH
elastic surface waves

10 Complex Poynting vector
in propagation direction x1

P1 = 1
2 E2 × H∗

3 P1 = − 1
2 τ13v∗3

Complex Poynting vector
in propagation direction x1

11 Complex Poynting vector
in transverse direction x2

P2 = 1
2 E1 × H∗

3 P2 = − 1
2 τ23v∗3

Complex Poynting vector
in transverse direction x2

12
Wave impedance

ZTM = E2/H3, TM modes

Z−1
TM =

vp(ω)

{
ε1(ω), metal

ε2, dielec

Z−1
s =

vp(ω)

{
s(1)44 (ω), meta.
s(2)44 , conven.

Wave impedance
Zs = −τ13/v3, elastic

surface waves

As a result, the analytical formulas for all field variables analyzed in this paper, such
as mechanical displacement u3(x2), shear stresses τ23(x2), τ13(x2), transverse wavenum-
bers q1, q2, wavenumber k(ω), phase velocity vp(ω), group velocity vg(ω), penetration

depths δ1(ω), δ2(ω), net active power flows P(1)
1 (ω), P(2)

1 (ω), average reactive power

flows P(1)
2 (ω), P(2)

2 (ω), as well as the dispersion relation can be readily transferred to the
SPP domain by a simple substitution of the corresponding symbols.



Sensors 2023, 23, 9879 17 of 25

In particular, Equations (10)–(37) developed in this paper in Sections 3.1–3.8 are
valid also (after simple replacement of the corresponding symbols) in the domain of SPP
electromagnetic waves.

For example, phase velocity vp(ω) of the SPP electromagnetic waves (see row 9 in
Table 1) is expressed by the same formula as phase velocity vp(ω) of the new SH elastic

surface waves, providing that s(1)44 (ω) and s(2)44 are substituted by ε1(ω) and ε2, respectively.
The symbol v2 corresponds to phase velocity of bulk SH waves in the conventional elastic

material (v2 = 1/
√

s(2)44 ρ2) and to bulk transverse electromagnetic waves in the dielectric
(v2 = 1/

√
ε2µ2).

Interestingly, the crucial step in development of the quantitative model of the elas-
tic metamaterial with a Drude-like elastic compliance (see Section 2.3) was the reverse
transfer of an analytical equation developed in the electromagnetic domain (Equation B.2.5
in [20]) into the domain of the SH elastic waves (see Equation (7) in Section 2.3.3 and the
accompanying discussion).

5. Numerical Results
5.1. Dispersion Curves

Figure 9 presents the dispersion curves of the new surface acoustic wave. Using
Equation (22), one can show that if ω → 0 , then k(ω) → 0 . On the other hand, when
ω → ωsp then the wavenumber k(ω) → ∞ , (see Figure 9).
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5.2. Phase Velocity  
Equation (25) shows that if 𝜔 → 0, then 𝑣௣(𝜔) → 𝑣ଶ. On the other hand, when 𝜔 →𝜔௦௣, then the phase velocity 𝑣௣(𝜔) → 0, (see Figure 10).  

Figure 9. Normalized angular frequency ω/ωsp versus normalized wavenumber k(ω)/k2, for

r = ρ1/ρ2 as a parameter (s(2)44 /s0 = 1).

5.2. Phase Velocity

Equation (25) shows that if ω → 0 , then vp(ω) → v2 . On the other hand, when
ω → ωsp , then the phase velocity vp(ω) → 0 , (see Figure 10).
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5.3. Group Velocity

A closer look at Equation (26) reveals that if ω → 0 , then vg(ω) → v2 (see Figure 10.
On the other hand, when ω → ωsp , then vg(ω) → 0 . Thus, phase vp(ω) and group
vg(ω) velocities tend to the same limiting values for ω → 0 and ω → ωsp , (see
Figures 10 and 11).
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5.4. Penetration Depths in Both Half-Spaces

Equation (27) shows that If the angular frequency ω → 0 then the normalized pen-
etration depth in the metamaterial half-space δ1(ω)/λ → 0. On the other hand, when
ω → ωsp then δ1(ω)/λ → 1/2π. Thus, the normalized penetration depth δ1(ω)/λ in the
metamaterial half-space is always subwavelength, i.e., δ1(ω)/λ < 1/2π, (see Figure 12).
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On the other hand (see Equation (28)), the normalized penetration depth in the con-
ventional elastic half-space δ2(ω)/λ → ∞ , if angular frequency ω → 0 . Similarly, when
ω → ωsp then δ2(ω)/λ → 1/2π. As a result, the normalized penetration depth δ2(ω)/λ
is higher than “1” (see dotted horizontal line in Figure 13) for low frequencies and sub-
wavelength for high frequencies approaching the cut-off frequency ωsp, (see Figure 13).
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5.5. Net Active Power Flow in the Direction of Propagation x1

Using Equation (33) in conjunction with Equations (27) and (28), one can demon-
strate that if ω → 0 then P(1)

1 (ω)/P(2)
1 (ω) → 0 . On the other hand, if ω → ωsp , then

P(1)
1 (ω)/P(2)

1 (ω) → −1 , (see Figure 14).
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Figure 14. The ratio of net active power flows −P(1)
1 (ω)/P(2)

1 (ω), in the direction of propagation x1,

versus normalized angular frequency ω/ωsp, for s = s(2)44 /s0 as a parameter. ρ1 and ρ2 are arbitrary.

5.6. Average Reactive Power Flow in the Transverse Direction x2

From Equation (36), we can conclude that if ω → 0 then P(1)
2 (ω)/P(2)

2 (ω) tends to

zero. On the other hand, if ω → ωsp , then P(1)
2 (ω)/P(2)

2 (ω) → 1 , (see Figure 15).
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6. Discussion

Elastic surface waves propagating in metamaterial waveguides were subject of a num-
ber of papers that analyzed the Rayleigh surface waves at the solid-vacuum interface [24],
Scholte interfacial waves at the solid-liquid interface [25], shear horizontal waves on a semi-
infinite half-space loaded with a metasurface [26,27] or Love surface waves in waveguides
loaded with a resonant metasurface [28].

The possibility of the existence of elastic SH waves propagating at the interface of two
elastic half-spaces, one of which is an elastic metamaterial, was briefly announced in one of
the author’s previous works [29]. However, the present paper differs significantly from the
former paper presented in [29]. In particular, in the present study:
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(1) A general theory of the new SH elastic surface waves propagating at an elastic interface
has been developed from first physical principles;

(2) All considered field variables are normalized, e.g., we use the normalized angular
frequency ω/ωsp, normalized wavenumber k(ω)/k2 etc.;

(3) The influence of the density of both half-spaces on the characteristics of the new elastic
SH wave is taken into consideration;

(4) New analytical formulas for the penetration depths δ1(ω)/λ and δ2(ω)/λ were
established. The newly developed formulas can be of significant practical importance
in design of devices in the domain of SPP and in the domain of new SH elastic
surface waves;

(5) A new quantitative model of the elastic metamaterial with a Drude-like elastic com-

pliance s(1)44 (ω) has been developed.

It should be emphasized that all the five developments mentioned above have been
included in the present paper and were not yet published elsewhere.

Our former research [30] on elastic surface waves propagating in conventional elastic
waveguides showed that SH surface waves, such as Love surface waves [31], share many
common properties with waves in other domains of physics, such as TM (Transverse
Magnetic) modes in optical planar waveguides or wave function of quantum particles in a
potential well. However, the present paper was mostly influenced by recent developments
in the domain of elastic metamaterials and SPP electromagnetic surface waves propagating
at the metal-dielectric interface [32].

In this paper, we demonstrated that the ultrasonic analogue of SPP electromagnetic
waves can exist in elastic waveguides consisting of two elastic half-spaces, providing that
one of the elastic half-spaces is an elastic metamaterial with a negative elastic compliance
s(1)44 (ω) that corresponds to the dielectric function ε(ω) in Drude’s model of metals. These
two types of waves are described by formally identical mathematical models and, therefore,
have similar (1) distribution field variables and (2) dispersion equation.

The dispersion curves of the new SH elastic surface wave, shown in Figure 9, have
the characteristic property that the wavenumber k(ω) tends to infinity k(ω) → ∞ , when
the wave angular frequency ω approaches the cuff-of frequency ωsp. Since λ = 2π/k, the
wavelength λ of the new SH elastic surface wave tends to zero λ → 0 when ω → ωsp .
This phenomenon can be exploited in the subwavelength near field ultrasonic imaging.

Another very intriguing property of the new SH elastic surface waves is that their
phase vp(ω) and group vg(ω) velocities tend to zero when the wave frequency approaches
the cut-off frequency ω → ωsp (see Figures 10 and 11). This property is of key importance
in the potential applications of the new SH elastic surface wave in ultrasonic sensors with
extremely large mass sensitivity, which can give rise to a new generation of biosensors and
chemosensors with unprecedented sensitivity.

This paper contains several new original formulas which to the best of our knowledge
were not yet published in the literature, namely:

- Relation for the product of penetration depths δ1(ω), δ2(ω) in two half-spaces of the
waveguide (Equation (30));

- Relation between net active power flows P(1)
1 (ω), P(2)

1 (ω) in the direction of propa-
gation x1 and penetration depths δ1(ω), δ2(ω) in two half-spaces of the waveguide
(Equation (33));

- Relation between average reactive power flows P(1)
2 (ω), P(2)

2 (ω) in the transverse
direction x2 and penetration depths δ1(ω), δ2(ω) in two half-spaces of the waveguide
(Equation (36));

- Relation between net active power flows P(1)
1 (ω), P(2)

1 (ω) in the direction of propaga-

tion x1 and average reactive power flows P(1)
2 (ω), P(2)

2 (ω) in the transverse direction
x2 of the waveguide (Equation (37)).
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All new equations mentioned above, which were developed in the elastic domain,
can be directly transferred into the domain of SPP electromagnetic surface waves, using to
this end Table 1 presented in Section 4. In particular, the relation between the penetration
depths δ1(ω), δ2(ω) in two half-spaces of the waveguide (Equation (30)) can be useful for
designers of SPP electromagnetic sensors, in selection of proper wave frequency providing
high subwavelength concentration of energy in the dielectric material of the waveguide
leading to long range propagation of SPP waves.

Similarly, the new relations between the power flows and the penetration depths in
two half-spaces of the waveguide (Equations (33) and (36)) indicate that the proper control
of the net active power flow in the direction of propagation may be very important in
achieving high sensitivity of long range SPP sensors with low losses.

The results presented in Figures 9–15 reveal that the densities ρ1, ρ2, in both half-
spaces of the waveguide, have a profound impact on all parameters of the proposed
new SH elastic surface waves. For example, if ρ1/ρ2 = 1, the penetration depth in the
metamaterial half-space δ1(ω) is ~43 times smaller than the wavelength λ of the wave, at
ω/ωsp = 0.2 (see green curve Figure 12). By contrast, if ρ1/ρ2 = 20 the penetration depth
δ1(ω) decreases significantly and is ~167 times smaller than the wavelength λ (see red
curve in Figure 12).

Therefore, since the densities ρ1, ρ2 correspond to magnetic permeabilities µ1, µ2 in
SPP electromagnetic waveguides (see rows 6 and 7 in Table 1 in Section 4) it implies that we
can also effectively shape the characteristics of SPP electromagnetic waves by analogous
adjustment of µ1 and µ2.

On the other hand, due to strong formal similarities between the new SH elastic surface
waves and SPP electromagnetic surface waves it may be possible in future to transfer many
fascinating newly discovered SPP phenomena, such as cloaking [14], trapping (zero group
velocity) [13] and topological protection [15] into the domain of elastic metamaterials using
to this end the new SH elastic surface waves, proposed in this paper.

As a result, the proposed new SH elastic surface waves can open new possibilities to
control wave phenomena in elastic solids and can constitute the basis for a new generation
of modern devices in the domain of sensors, acoustic imaging, and signal processing.

Using recently discovered elastic hyperbolic metamaterials [33] we can achieve sub-
wavelength imaging by amplification of the evanescent waves scattered from the object,
which contain information about fine details of the object. The evanescent waves are not
only amplified but also are converted to propagation modes, which can be focused in a
far zone of the hyperbolic superlens. However, the same amplification of the evanescent
waves and subwavelength imaging can be achieved with the proposed new SH elastic
surface waves, but in a simpler way. In fact, the elastic hyperbolic metamaterials are quite
complicated since they require that the mass density of the hyperbolic metamaterial must be
simultaneously anisotropic and negative [34]. By contrast, using the new SH elastic surface
waves we can also achieve subwavelength imaging and amplification of the evanescent
waves but in a much simpler way. In fact, two half-spaces of the waveguide supporting the
new SH waves are always isotropic and only one metamaterial half-space must exhibit a
negative Drude-like elastic compliance.

Finally, we must address the issue of losses that will inevitably occur in waveguides
of the proposed new SH acoustic surface waves. Interestingly, the problem of losses
was solved in SPP devices by the introduction of a multilayer waveguide structure. For
example, a very thin layer (25 nm) of lossy metal (Au) was sandwiched between two
low loss dielectrics (SU-8 polymer) provided a 5 mm long sensor [35]. The presence of
losses may also affect efficiency of specific wave phenomena occurring in metamaterial
waveguides, such as zero group velocity. In fact, in reference [36] it was shown that the
minimal group velocity that can be achieved in waveguides with losses is always higher
than zero.

Moreover, the presence of losses can limit the maximum value of the wavenumber
k(ω) of the SH surface wave propagating at the boundary of the elastic half-space and the
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metamaterial half-space with Drude-like elastic compliance. This may limit the resolution
of Drude-type metamaterial superlenses used in near-field acoustic imaging.

This paper is a clear example of the multidisciplinary research that can bring new
valuable and sometimes unexpected physical insight on the physical phenomena occurring
in two domains of physics, i.e., theory of elasticity and electromagnetism.

It will be advantageous in future research to extend the analysis of the new SH elastic
surface waves on waveguides with losses as well as to design a model of a biosensor based
on the analogy with SPP electromagnetic devices [35,37].

7. Conclusions

Based on the results of research presented in this paper, we can draw the following
detailed conclusions:

1. The new SH elastic surface waves can be considered as an elastic analogue of the
electromagnetic SPP waves, due to strong formal similarities of their mathematical
models (Table 1 in Section 4);

2. The new SH elastic surface waves can exist at the interface of two elastic half-spaces

one of which is an elastic metamaterial with a negative compliance s(1)44 (ω)·s(2)44 < 0
(Equation (21));

3. The phase velocity vp(ω) of the new SH ultrasonic surface waves is antiparallel to the

net active power flow P(1)
1 (ω) in the metamaterial half-space and parallel to the net

active power flow P(2)
1 (ω) in the conventional elastic half-space;

4. The net active power flows P(1)
1 (ω), P(2)

1 (ω) of the new SH elastic surface waves, in
both half-spaces, are antiparallel along the direction of propagation x1, (Equations
(31) and (32));

5. An average reactive power flows P(1)
2 (ω), P(2)

2 (ω), in the transverse direction x2,
have the same sign (+) corresponding to the inductive type of the reactive power,
oscillating between two half-spaces of the waveguide (Equations (34) and (35));

6. The penetration depth δ1(ω) of the new SH elastic surface waves in the metamaterial
half-space is always smaller than that in the conventional elastic half-space δ2(ω), i.e.,
δ1(ω) < δ2(ω) (Figures 12 and 13);

7. The ratio of the net active power flows P(1)
1 (ω)/P(2)

1 (ω) and the corresponding ratio

of the average reactive power flows P(1)
2 (ω)/P(2)

2 (ω) are intimately related to the
ratio of the penetration depths δ1(ω)/δ2(ω) in both half-spaces of the waveguide
(Equations (33) and (36) and Figures 14 and 15);

8. The ratio of the net active power flows P(1)
1 (ω)/P(2)

1 (ω) and the corresponding ratio

of the average reactive power flows P(1)
2 (ω)/P(2)

2 (ω) are not independent since they
are related via Equation (37);

9. The penetration depth (see Figures 12 and 13) in both elastic half-spaces of the waveg-
uide is deeply subwavelength. Therefore, the new SH elastic surface waves can find
applications in sensors of extremely high mass sensitivity, superlensing, and in near
field acoustic microscopy with a subwavelength resolution and imaging. These are
very exciting applications of the newly discovered SH ultrasonic waves;

10. Several new formulas (Equations (30), (33), (36), and (37)) developed in this paper may
also be useful in the design of long range SPP waveguides with low propagation losses;

11. The densities ρ1, ρ2, in both half-spaces of the waveguide, have a profound impact on
all parameters of the proposed new elastic surface waves (Figures 9–15). Therefore,
by virtue of Table 1 in Section 4, we can also effectively shape the characteristics of
SPP electromagnetic waves by analogous adjustment of the corresponding magnetic
permeabilities µ1 and µ2;

12. Newly discovered SPP phenomena, such as cloaking, trapping (zero group velocity),
and topological protection can be transferred into the domain of elastic metamaterials
using to this end the new SH elastic surface waves, proposed in this paper. This
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may open new fascinating possibilities to control wave phenomena in the domain
of elastodynamics.

It should be emphasized that due to their close similarity with the electromagnetic SPP
waves the proposed new SH elastic surface waves are characterized by a large confinement
of acoustic energy near the surface. For this reason, the proposed new SH elastic surface
waves can constitute a basis of a new generation of ultrasonic sensors with a giant mass
sensitivity. For example, the new SH elastic surface waves can find applications in:

- ultrasonic sensors with extremely high mass sensitivity;
- biosensors and chemosensors;
- sub-wavelength ultrasonic microscopy and imaging.

Because of its interdisciplinary character, the present paper can be of interest for a
broad spectrum of researchers and engineers working in different domains of science and
technology, such as acoustics, optics, elastic metamaterials, ultrasonic sensors, biosensors,
and chemosensors.
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