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Abstract: In this paper, we investigate the connection between average power flows in Love wave
waveguides with the mass sensitivity of Love wave sensors. In fact, loading with a Newtonian liquid
gives rise to two extra power flows, in the transverse direction towards the loading Newtonian liquid.
The first is an active power flow feeding viscous losses in the Newtonian liquid and the second is a
reactive power flow that is responsible for the phase delay of the Love wave and consequently for the
changes in phase velocity of the Love wave. Since loading with a lossless mass also leads to changes
in the phase velocity, we assert that mass sensitivity Svp

σ of Love wave sensors is connected to the
average reactive power flow, in the transverse direction x2, bouncing back and forth, between the
interior of the waveguide and the loading Newtonian liquid. Subsequently, we found the thickness
of the effective surface layer of mass that is equivalent to loading with a semi-infinite Newtonian
liquid. The analytical formulas developed in this paper are illustrated by the results of numerical
calculations performed for an exemplary Love wave waveguide composed of a PMMA surface layer
deposited on an ST-Quartz substrate.

Keywords: Love wave sensors; active and reactive power flow; Poynting vector; mass sensitivity

1. Introduction

Bulk and surface elastic waves [1–4] are widely used in sensors of physical properties
of materials as well as in biosensors and chemosensors [5–14]. The elastic surface waves of
the Love type are especially attractive for use in sensors working in a liquid environment,
since Love surface waves can propagate long distances when loaded by low viscosity
liquids, such as water. Since most chemosensors and biosensors [15–18] are used in a
water-like environment, the Love wave sensors offer a significant advantage over other
types of elastic sensors based on bulk elastic waves or Rayleigh-type elastic surface waves.

In this paper, we will try to connect the average power flow occurring in Love wave
waveguides loaded with a Newtonian liquid with some engineering parameters of Love
wave sensors, such as their coefficient of mass sensitivity S

vp
σ . At first glance, the connection

between the average power flow and the coefficient S
vp
σ is not obvious. However, the

results obtained in this paper suggest that in fact the average power flow and the mass
sensitivity of the sensor are intimately related, i.e., they display the same qualitative
dependencies (maxima) as a function of wave frequency f and thickness h1 of the surface
layer of the waveguide.

In Love wave waveguides, loaded with a Newtonian liquid, the average (total) power
flows P1 =

∫ ∞
−∞ P1(x2)dx2 and P2 =

∫ ∞
−∞ P2(x2)dx2 in both directions, i.e., in the direction

of propagation x1 and in the transverse direction x2, can be of the active or reactive type.
The corresponding Poynting vectors P1(x2) and P2(x2), were defined in (Auld, 1990). In
this paper we will focus on the average power flow P2 in the transverse direction x2 as well
as on the corresponding complex Poynting vector P2(x2) evaluated at the interface x2 = 0,
between the loading Newtonian liquid and the elastic surface layer of the waveguide.
Indeed, we will argue that the reactive part ImP2 of the average power flow in the transverse
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direction x2 is related to mass sensitivity S
vp
σ of the Love wave sensor, whereas the active

part ReP2 of the average power flow in the transverse direction x2 is connected to the
attenuation of the Love wave.

In other words, the active power flow ReP2 in the transverse directions x2 feeds viscous
losses in the loading Newtonian liquid and is ultimately dissipated to heat. On the other
hand, the reactive power flow ImP2 in the transverse directions x2 gives rise to delay of the
Love wave and therefore contributes to changes in its phase velocity.

The key parameter of the Love wave sensor is its coefficient of mass sensitivity S
vp
σ , i.e.,

the relative change ∆vp/vp in the phase velocity vp due to the loading of the waveguide
with the surface mass density σ

[
kg/m2] [5]. The mass sensitivity S

vp
σ depends on the

surface layer thickness h1, frequency f , and other material parameters of the Love wave
waveguide [19,20].

Despite the fact that the coefficient of mass sensitivity S
vp
σ was initially defined for

waveguides loaded with an infinitesimally thin layer of lossless mass, in this paper we
extend the notion of the mass sensitivity S

vp
σ on waveguides loaded with a semi-infinite

lossy Newtonian liquid of a density ρ0 and viscosity η0. To this end, we introduce the
notion of the effective layer of thickness h′ = δ0/2 that provides the same phase delay as a
semi-infinite Newtonian liquid loading the waveguide, where δ0 is the penetration depth of
the Love wave into the Newtonian liquid. As a result, the equivalent surface mass density
σ of a semi-infinite Newtonian liquid loading Love wave waveguide equals σ = ρ0(δ0/2)
[kg/m2], see Section 4.2.

The analytical formulas for the mass sensitivity S
vp
σ and the reactive power flow ImP2

in the transverse direction x2, were supported by the numerical calculations performed
for a Love wave waveguide composed of a PMMA-Poly(methyl methacrylate) surface
layer deposited on ST-Quartz substrate. In fact, Quartz is very attractive as a material for
substrates in Love wave sensors, since it is the only common piezoelectric material that
supports pure shear SH bulk waves that can be generated and received via a piezoelectric
effect, using interdigital transducers in a wide range of frequencies, namely from∼1 MHz to
∼1 GHz . On the other hand, PMMA is a very good candidate as a material for surface
layers in Love wave waveguides, due to its low phase velocity (∼1100 m/s) of bulk SH
waves that promotes strong energy trapping in the surface layer itself.

To the best of our knowledge, the relationship between the mass sensitivity S
vp
σ and

complex power flow P2 in Love wave sensors was not yet analyzed in the literature and
therefore can be considered as an original contribution to the state-of-the art.

The results of the theoretical analysis and numerical calculations presented in this
paper provide a deeper insight into the physical phenomena occurring in Love wave
sensors and can serve as a basis for better design and optimization of Love wave sensors,
biosensors, and chemosensors, working in a liquid environment.

2. Physical Model

In this paper, we investigate Love wave waveguides with a single elastic surface layer
rigidly bonded to a semi-infinite elastic substrate. The top surface of the waveguide is
loaded with a Newtonian liquid of a semi-infinite extent (see Figure 1).

The waveguide structure shown in Figure 1 represents the main components of the
simplest Love wave sensor working in a liquid environment.

Part of the energy of the Love wave penetrates into the Newtonian liquid, where it
is dissipated into heat. Therefore, wavenumber k of the Love wave is a complex quantity
given by the following formula:

k = kp + jα (1)

where kp = ω/vp determines the phase velocity vp of the Love wave, α is the attenuation,
ω stands for the angular frequency and “j” is the imaginary unit.
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Figure 1. Cross-section of the waveguide employed in Love wave sensors. Elastic surface layer 
(PMMA) of thickness ℎଵ is bonded rigidly to the elastic substrate (ST-cut-Quartz). Top surface of 
the waveguide is in contact with a semi-infinite Newtonian liquid. 
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where 𝑘௣ = 𝜔/𝑣௣ determines the phase velocity 𝑣௣ of the Love wave, 𝛼 is the attenua-
tion, 𝜔 stands for the angular frequency and “𝑗” is the imaginary unit. 

3. Mathematical Model 
Love surface waves, analyzed in this paper, are time-harmonic, propagate in the di-

rection 𝑥ଵ, and are uniform along the transverse direction 𝑥ଷ. Therefore, their mechanical 
displacement 𝑢ଷ(௜) and shear stresses 𝜏ଶଷ(௜) in the Newtonian liquid (𝑖 = 0), elastic surface 
layer (𝑖 = 1) and in the elastic substrate (𝑖 = 2), see Figure 1, will be sought in the follow-
ing generic form: 𝑢ଷ(௜) = 𝑢ଷ(௜)(𝑥ଶ)𝑒𝑥𝑝[𝑗(𝑘 ∙ 𝑥ଵ − 𝜔𝑡)] (2a)𝜏ଶଷ(௜) = 𝜏ଶଷ(௜)(𝑥ଶ)𝑒𝑥𝑝[𝑗(𝑘 ∙ 𝑥ଵ − 𝜔𝑡)] (2b)𝜏ଵଷ(௜) = 𝜏ଵଷ(௜)(𝑥ଶ)𝑒𝑥𝑝[𝑗(𝑘 ∙ 𝑥ଵ − 𝜔𝑡)] (2c)

where 𝑢ଷ(௜)(𝑥ଶ) , 𝜏ଶଷ(௜) , and 𝜏ଵଷ(௜)  express variations of the mechanical displacement and 
shear stress in the transverse direction 𝑥ଶ, 𝑘 is the wavenumber of the Love surface wave, 𝜔 its angular frequency and index 𝑖 = 0, 1 and 2. 
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where 𝑐ସସ(௜) is the shear modulus of elasticity of the constituting medium number 𝑖. 

Figure 1. Cross-section of the waveguide employed in Love wave sensors. Elastic surface layer
(PMMA) of thickness h1 is bonded rigidly to the elastic substrate (ST-cut-Quartz). Top surface of the
waveguide is in contact with a semi-infinite Newtonian liquid.

3. Mathematical Model

Love surface waves, analyzed in this paper, are time-harmonic, propagate in the
direction x1, and are uniform along the transverse direction x3. Therefore, their mechanical
displacement u(i)

3 and shear stresses τ
(i)
23 in the Newtonian liquid (i = 0), elastic surface

layer (i = 1) and in the elastic substrate (i = 2), see Figure 1, will be sought in the following
generic form:

u(i)
3 = u(i)

3 (x2)exp[j(k · x1 −ωt)] (2a)

τ
(i)
23 = τ

(i)
23 (x2)exp[j(k · x1 −ωt)] (2b)

τ
(i)
13 = τ

(i)
13 (x2)exp[j(k · x1 −ωt)] (2c)

where u(i)
3 (x2), τ

(i)
23 , and τ

(i)
13 express variations of the mechanical displacement and shear

stress in the transverse direction x2, k is the wavenumber of the Love surface wave, ω its
angular frequency and index i = 0, 1 and 2.

By definition, shear stresses τ
(i)
23 , τ

(i)
13 of the Love wave are connected to the mechanical

displacement u(i)
3 by the following formulas:

τ
(i)
23 = c(i)44

∂u(i)
3

∂x2
(3a)

τ
(i)
13 = c(i)44

∂u(i)
3

∂x1
(3b)

where c(i)44 is the shear modulus of elasticity of the constituting medium number i.

3.1. Differential Equations

Mechanical displacement u(i)
3 of Love surface waves is governed by the following

wave equation [21] resulting from the second Newton’s law of motion:

1
v2

i

∂2u(i)
3

∂t2 =

(
∂2u(i)

3
∂x2

1
+

∂2u(i)
3

∂x2
2

)
(4)
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where vi =
(

c(i)44 /ρi

)1/2
is the phase velocity of SH bulk waves in medium number i, c(i)44 is

its shear modulus of elasticity and ρi is the density.
Substituting Equation (2) for the mechanical displacement u(i)

3 into wave equation
Equation (4) one obtains the following ordinary differential equation of the Helmholtz type:

d2u(i)
3 (x2)

dx2
2

+
(

k2
i − k2

)
u(i)

3 (x2) = 0 (5)

where ki = ω/vi is the wavenumber of bulk SH waves in medium number i = 0, 1 and 2.

3.2. Mechanical Displacement u(i)
3 (x2) and Shear Stresses τ

(i)
23 (x2), τ

(i)
13 (x2)

3.2.1. Newtonian Liquid (x2 < 0)

Since the mechanical displacement u(0)
3 (x2) of the Love wave must vanish for x2 → −∞ ,

we will seek the solution to Equation (5) in the following form:

u(0)
3 (x2) = C0 · exp(q0 · x2) (6)

where q0 =
(
k2 − k2

0
)1/2 is the complex transverse wave number of the Love wave in

the Newtonian liquid and C0 is an arbitrary constant. In order to fulfill the condition
u(0)

3 (x2) → 0 for x2 → −∞ the real part of the transverse wavenumber q0 must be positive,
Req0 > 0.

By virtue of Equation (3a), shear stress τ
(0)
23 of the Love wave in the Newtonian liquid

is given by:
τ
(0)
23 = C0 · c

(0)
44 · q0 · exp(q0 · x2) · exp[j(kx1 −ωt)] (7)

where c(0)44 = −jωη0 is the shear modulus of elasticity of the Newtonian liquid and η0
its viscosity.

The shear stress τ
(0)
23 will enter into the appropriate boundary conditions at the inter-

face x2 = 0 of the waveguide as well as into equations for the Poynting vector P(0)
2 (x2) of

the Love wave in the transverse direction x2.
Similarly, using Equation (3b), shear stress τ

(0)
13 of the Love wave in the Newtonian

liquid is given by:

τ
(0)
13 = jkC0 · c

(0)
44 · exp(q0 · x2) · exp[j(kx1 −ωt)] (8)

where c(0)44 = −jωη0 is the shear modulus of elasticity of the Newtonian liquid and η0
its viscosity.

The shear stress τ
(0)
13 will enter into equations for the Poynting vector P(0)

1 (x2) of the
Love wave in the direction of propagation x1.

3.2.2. Elastic Surface Layer (0 < x2 < h1)

Since the elastic surface layer is of a finite thickness h1 the solution to Equation (5) can
be sought in the following form:

u(1)
3 (x2) = C1 · sin(q1 · x2) + C2 · cos(q1 · x2) (9)

where C1 and C2 are arbitrary constants and the transverse wave number of the Love wave
in the elastic surface layer q1 =

(
k2

1 − k2)1/2. Since the elastic surface layer is of a finite
thickness h1, the real part of q1 can be either positive or negative.
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By virtue of Equation (3a), shear stress τ
(1)
23 of the Love wave in the elastic surface

layer is given by:

τ
(1)
23 = c(1)44 q1[C1cos(q1x2)− C2 sin(q1x2)]exp[j(kx1 −ωt)] (10)

The shear stress τ
(1)
23 will enter into the appropriate boundary conditions at two

interfaces x2 = 0 and x2 = h1 of the waveguide as well as into equations for the Poynting
vector P(1)

2 (x2) of the Love wave in the transverse direction x2.

Analogously, employing Equation (3b), shear stress τ
(1)
13 of the Love wave in the elastic

surface layer is given by:

τ
(1)
13 = jkc(1)44 [C1 · sin(q1 · x2) + C2 · cos(q1 · x2)]exp[j(kx1 −ωt)] (11)

The shear stress τ
(1)
13 . will enter into equations for the Poynting vector P(1)

1 (x2) of the
Love wave in the direction of propagation x1.

3.2.3. Elastic Substrate (x2 > h1)

Since the amplitude of the Love surface wave in the elastic substrate must tend to zero
for x2 → ∞ , as a solution to Equation (5) we choose the following expression:

u(2)
3 (x2) = C3 · exp(−q2 · x2) (12)

where the transverse wave number of the Love wave in the substrate q2 =
(
k2 − k2

2
)1/2

must fulfill the condition Re(q2) > 0. Moreover, k2 = ω/v2 is the wavenumber of SH bulk

waves in the substrate and v2 =
(

c(2)44 /ρ2

)1/2
is the phase velocity of bulk SH waves in the

substrate, c(2)44 is its modulus of elasticity and ρ2 is its density.

By virtue of Equation (3a), shear stress τ
(2)
23 of the Love wave in the elastic substrate is

given by:
τ
(2)
23 = −C3 · c

(2)
44 · q2 · exp(−q2 · x2) · exp[j(kx1 −ωt)] (13)

The shear stress τ
(2)
23 will enter into the appropriate boundary conditions at the inter-

face x2 = h1 of the waveguide as well as into equations for the Poynting vector P(2)
2 (x2) of

the Love wave in the transverse direction x2.
On the other hand, using Equation (3b), shear stress τ

(2)
13 of the Love wave in the elastic

substrate is given by:

τ
(2)
13 = jkC3 · c

(2)
44 · exp(−q2 · x2) · exp[j(kx1 −ωt)] (14)

The shear stress τ
(2)
13 will enter into equations for the Poynting vector P(2)

1 (x2) of the
Love wave in the direction of propagation x1.

3.3. Boundary Conditions

Boundary conditions at two interfaces x2 = 0 and x2 = h1 of the waveguide shown in
Figure 1 require the continuity of the mechanical displacement u(i)

3 and shear stress τ
(i)
23 [1].

Consequently, at the interface x2 = 0 between the Newtonian liquid, and the elastic surface
layer we can write:

u(0)
3

∣∣∣
x2=0

= u(1)
3

∣∣∣
x2=0

(15)

τ
(0)
23

∣∣∣
x2=0

= τ
(1)
23

∣∣∣
x2=0

(16)
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Similarly, at the interface x2 = h1 between the elastic surface layer and the elastic
substrate we have:

u(1)
3

∣∣∣
x2=h1

= u(2)
3

∣∣∣
x2=h1

(17)

τ
(1)
23

∣∣∣
x2=h1

= τ
(2)
23

∣∣∣
x2=h1

(18)

Substituting Equations (6), (7), (9), (10), (12) and (13) into boundary conditions
Equations (15)–(18), one obtains the following set of homogeneous linear algebraic equa-
tions for the unknown coefficients C0, C1, C2 and C3:

1 0 −1 0
c(0)44 q0 −c(1)44 q1 0 0

0 sin(q1h1) cos(q1h1) −exp(−q2h1)

0
(

c(1)44 q1

)
· cos(q1h1) −

(
c(1)44 q1

)
· sin(q1h1)

(
c(2)44 q2

)
· exp(−q2h1)




C0
C1

C2
C3

 =


0
0
0
0

 (19)

Since the set of 4 linear algebraic equations (Equation (19)) is homogeneous we can
determine only 3 independent coefficients Ci in function of the remaining one, say C0.
Consequently, the coefficients C1, C2, C3 can be expressed in terms of the coefficient C0 as:

C1 = C0
c(0)44 q0

c(1)44 q1

C2 = C0

C3 = C0eq2h1

[
c(0)44 q0

c(1)44 q1
sin(q1h1) + cos(q1h1)

] (20)

3.4. Dispersion Equation

The set of homogeneous linear algebraic equations given by Formula (19) in a matrix
form has a non-trivial solution if the determinant of its left-hand matrix equals zero. This
condition leads to the following dispersion relation for the phase velocity and attenuation
of the Love wave propagating in the investigated waveguide shown in Figure 1:[(

c(1)44 q1

)2
− c(2)44 q2c(0)44 q0

]
tan(q1h1)− c(1)44 q1

[
c(0)44 q0 + c(2)44 q2

]
= 0 (21)

Formula (21) is a complex dispersion equation of the Love wave, propagating in the
waveguide structure shown in Figure 1. Equation (21) can be split into its real and imaginary
parts, providing therefore a set of two nonlinear algebraic equations for unknown kp and
α [21]. The resulting set of two nonlinear transcendental algebraic equations can be solved
numerically, using for instance a two-dimensional Newton–Raphson procedure.

Indeed, solving numerically the dispersion equation is a prerequisite in the analysis of
Love surface waves, propagating in any waveguide structure, since without the knowledge
of the complex wavenumber k = kp + jα, we cannot evaluate numerical values of other
field quantities of the Love wave, such as the mechanical displacement u3, shear stress τ23
or Poynting vector P2.

3.5. Complex Poynting Vector P2(x2), in the Transverse Direction x2

The power flux in the investigated Love wave waveguide is represented by the
complex Poynting vector with two components, i.e., P1(x2) in the direction of propagation
x1 and P2(x2) in the transverse direction x2.

In this section, we will develop analytical formulas for the complex Poynting vector
P2(x2) in the transverse direction x2 of the waveguide that is loaded with a Newtonian
liquid at its surface (x2 = 0).

In free waveguides not loaded with a Newtonian liquid, the power flux P2(x2) across
the free interface x2 = 0 is obviously zero, P2(x2 = 0) = 0, since no power can be transmit-
ted from the waveguide into vacuum.
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This situation changes drastically in waveguides loaded with a Newtonian liquid,
since the acoustic power flux P2(x2) across the interface x2 = 0 is now clearly non-zero,
P2(x2 = 0) 6= 0. As a result, an additional complex power flow, between the interior of the
waveguide and the bulk of the loading Newtonian liquid, occurs.

Thus, the complex Poynting vector P2(x2) = ReP(0)
2 (x2) + jImP(0)

2 (x2), evaluated at
the interface x2 = 0, contains unique information about viscous η0 and inertial ρ0 properties
of the loading Newtonian liquid.

By definition, the complex Poynting vector P2(x2)
[
W/m2] in the transverse direction

x2 can be expressed as [2]:

P2(x2) = −
1
2

τ23(x2)[−jωu3(x2)]
∗ (22)

where the asterisk “∗” stands for complex conjugation and “j” is the imaginary unit.
Due to the interaction with the viscous Newtonian liquid, Love surface waves propa-

gating in the direction x1 in the waveguide structure shown in Figure 1, will be gradually
attenuated, what can be expressed analytically as P2(x1, x2) = P2(x2)e−2αx1

3.5.1. Newtonian Liquid (x2 < 0)

Substituting Equations (6) and (7), for the mechanical displacement u(0)
3 (x2) and

shear stress τ
(0)
23 (x2) of the Love wave in the Newtonian liquid, as well as Formula (20)

for the coefficients C1, C2, C3 into Equation (22) one obtains the following expression
for the complex Poynting vector P(0)

2 (x2) in the Newtonian liquid along, the transverse
direction x2:

P(0)
2 (x2) = −j

ω

2
|C0|2c(0)44 q0e2Re(q0)x2 (23)

where Re(q0) > 0.

3.5.2. Elastic Surface Layer (h1 > x2 > 0)

Substituting Equations (9) and (10), for the mechanical displacement u(1)
3 (x2) and

shear stress τ
(1)
23 (x2) of the Love wave in the elastic surface layer, as well as Formula (20) for

the coefficients C1, C2, C3 into Equation (22), one obtains the following expression for the
complex Poynting vectors P(1)

2 (x2) in the elastic surface, along the transverse direction x2:

P(1)
2 (x2) = −j

ω

2
|C0|2F2(q1x2)F∗1 (q1x2) (24)

where the auxiliary functions F1(q1x2) =
(

c(0)44 q0/c(1)44 q1

)
sin(q1x2) − cos(q1x2) and

F2(q1x2) = c(0)44 q0cos(q1x2)− c(1)44 q1sin(q1x2).

3.5.3. Elastic Substrate (x2 > h1)

Substituting Equations (12) and (13), for the mechanical displacement u(2)
3 (x2) and

shear stress τ
(2)
23 (x2) of the Love wave in the elastic substrate, as well as Formula (20) for

the coefficients C1, C2, C3 into Equation (22), one obtains the following expression for the
complex Poynting vectors P(2)

2 (x2) in the elastic substrate, along the transverse direction x2:

P(2)
2 (x2) = −j

ω

2
|C0|2F2(q1h)F∗1 (q1h)e−2Re(q2)(x2−h1) (25)

where Re(q2) > 0 and h1 stands for thickness of the elastic surface layer.
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3.5.4. Complex Poynting Vector P2(x2) Evaluated at the Interface x2 = 0 between
Newtonian Liquid and Elastic Surface Layer

As it was stated before in this section, the complex Poynting vector P2(x2) evaluated at
the interface x2 = 0 contains unique information about viscous η0 and inertial ρ0 properties
of the loading Newtonian liquid.

According to Equation (23) the complex Poynting vector P(0)
2 (x2) evaluated at the

interface x2 = 0 is given by:

P(0)
2 (x2 = 0) = −j

ω

2
|C0|2c(0)44 q0 (26)

The transverse wavenumber q0 of the Love wave in the Newtonian liquid is a complex
quantity; therefore, it can be represented as q0 = a0 + jb0. On the other hand, the elastic
modulus of the Newtonian liquid c(0)44 = −jωη0. Therefore, Equation (26) can be written as:

P(0)
2 (x2 = 0) = −ω2

2
|C0|2η0a0 − j

ω2

2
|C0|2η0b0 (27)

Since for the Newtonian liquid q0 =
(
k2 − k2

0
)1/2 and k2

0 = ω2ρ0/(−jωη0) as well as
the wavenumber of the Love wave k = kp + jα, we can write the following equation:

q2
0 = k2

p − α2 + j
(

kpα +
ωρ0

η0

)
(28)

Thus, real a0 and imaginary b0 part of the transverse wavenumber q0 of the Love wave
in the Newtonian liquid equal:

a0 =

√√√√√ k2
p−α2

2

√1 +
(

kpα+
ωρ0
η0

k2
p−α2

)2

+ 1


b0 = −

√√√√√ k2
p−α2

2

√1 +
(

kpα+
ωρ0
η0

k2
p−α2

)2

− 1


(29)

where kp = ω/vp
Consequently, from Equation (27) it follows that:

ReP(0)
2 (x2 = 0) = −ω2

2 |C0|2η0a0

ImP(0)
2 (x2 = 0) = −ω2

2 |C0|2η0b0
(30)

where a0, b0 are given by Equation (29).
Equation (30) shows that the real and imaginary parts of the complex Poynting vector

P(0)
2 (x2), evaluated at the interface x2 = 0, are involved functions of vp, α, ω, η0 and ρ0. It

should be noticed that vp and α depend in turn on the material and geometrical parameters
of the waveguide and Newtonian liquid.

Since in general ReP(0)
2 (x2 = 0) 6= 0 and ImP(0)

2 (x2 = 0) 6= 0, Equation (30) proves
that in waveguides loaded with a Newtonian liquid we observe a non-zero active power
flow from the waveguide interior to the loading Newtonian liquid as well as a non-zero
reactive power flow bouncing back and forth between waveguide interior and the loading
Newtonian liquid.
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3.6. Complex Poynting Vector P1(x2), in the Direction of Propagation x1

By definition, the complex Poynting vector P1(x2)
[
W/m2] in the direction of propa-

gation x1 is given by [2]:

P1(x2) = −
1
2

τ13(x2)[−jωu3(x2)]
∗ (31)

where the asterisk “∗” stands for complex conjugation and “j” is the imaginary unit.
Since shear stress τ

(i)
13 (x2) = jkc(i)44 u(i)

3 (x2), see Equation (2c), the complex Poynting

vector P(i)
1 (x2) in the constituting media (i = 0, 1, 2) of the waveguide writes:

P(i)
1 (x2) =

1
2

kc(i)44

∣∣∣u(i)
3 (x2)

∣∣∣2 (32)

where u(0)
3 (x2), u(1)

3 (x2) and u(2)
3 (x2) are, respectively, the mechanical displacements in

the Newtonian liquid (Equation (6)), elastic surface layer (Equation (9)), and in the elastic
substrate (Equation (12)). Analogously, c(i)44 correspond to the shear modulus of elasticity of
the constituting medium number i = 0, 1, 2.

3.7. Average (Total) Power Flow P2 =
∫ ∞
−∞ P2(x2)dx2 in the Transverse Direction x2

The average (total) power flow P2 in the transverse direction x2 is defined as:

P2 =
∫ ∞

−∞
P2(x2)dx2 =

0∫
−∞

P(0)
2 (x2)dx2 +

h1∫
0

P(1)
2 (x2)dx2 +

∞∫
h1

P(2)
2 (x2)dx2 (33)

where P(0)
2 (x2), P(1)

2 (x2) and P(2)
2 (x2) are, respectively, the complex Poynting vectors in the

Newtonian liquid (Equation (23)), elastic surface layer (Equation (24)) and in the elastic
substrate (Equation (25)).

The integrals in Equation (33) can be evaluated analytically. However, due to their
excessive length and complexity they will be not reproduced here. Since Poynting vectors
P(0)

2 (x2), P(1)
2 (x2) and P(2)

2 (x2) are complex, the average power flow P2 in the transverse
direction x2 is a complex-valued quantity, therefore it can be written as P2 = ReP2 + jImP2,
where in general ReP2 6= 0 and ImP2 6= 0.

The reactive part ImP2 of the average power flow P2, in the transverse direction x2, in
the Newtonian liquid P(0)

2 =
∫ 0
−∞ P(0)

2 (x2)dx2, will be plotted in Section 5.1, as a function
of frequency f and thickness of the elastic surface layer h1.

It should be noticed that the reactive parts of the average power flow in the elastic
surface layer P(1)

2 =
∫ h1

0 P(1)
2 (x2)dx2 and in the elastic substrate P(2)

2 =
∫ ∞

h1
P(2)

2 (x2)dx2 are
always non-zero in free waveguides, not loaded with a Newtonian liquid, since they are
responsible for the energy storage occurring in Love wave waveguides in the transverse
direction x2. However, the active part of the average power flow in the elastic surface
layer P(1)

2 and in the elastic substrate P(2)
2 is always zero in lossless waveguides, not loaded

with a Newtonian liquid. By contrast, the active part of the average power flow in the
elastic surface layer P(1)

2 , in the elastic substrate P(2)
2 and in the loading Newtonian liquid

is always non-zero in waveguides, loaded with a Newtonian liquid.

3.8. Average (Total) Power Flow P1 =
∫ ∞
−∞ P1(x2)dx2 in the Direction of Propagation x1

The average (total) power flow P1 in the direction of propagation x1 is defined as:

P1 =
∫ ∞

−∞
P1(x2)dx2 =

0∫
−∞

P(0)
1 (x2)dx2 +

h1∫
0

P(1)
1 (x2)dx2 +

∞∫
h1

P(2)
1 (x2)dx2 (34)
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where P(0)
1 (x2), P(1)

1 (x2) and P(2)
1 (x2) are, respectively, complex Poynting vectors in the

Newtonian liquid, elastic surface layer and in the elastic substrate, given by Equation (32).
The integrals in Equation (34) can be evaluated analytically. However, due to their

excessive length and complexity they will be not reproduced here. Since Poynting vectors
P(0)

1 (x2), P(1)
1 (x2) and P(2)

1 (x2) are complex, the average power flow P1 in the direction
of propagation x1 is a complex-valued quantity as well and therefore can be written as
P1 = ReP1 + jImP1, where in general ReP1 6= 0 and ImP1 6= 0. The active part ReP1 of the
average power flow P1 in the direction of propagation x1 will serve as a normalization
factor in Section 5.1.

4. Mass Sensitivity of Love Wave Sensors for Waveguides Loaded with an
Infinitesimal Layer of Lossless Mass

4.1. Coefficient of Mass Sensitivity S
vp
σ

One of the most important parameters characterizing the quality of Love wave sensors
is the coefficient of mass sensitivity. Until now, this coefficient of mass sensitivity was
evaluated using the perturbation theory and/or numerical methods such as the finite
element method, etc. [21–26]. In this paper, to evaluate the mass sensitivity, we used
analytical methods that provide a deeper insight into the physical background of the
operation of Love wave sensors [19,20].

The sensitivity of Love wave sensors to mass loading was initially defined in loss-
less waveguides, where a semi-infinite Newtonian liquid in Figure 1 is replaced by an
infinitesimal layer of lossless mass that only changes the phase velocity vp of the Love
wave, without introducing any extra attenuation, see Figure 2.
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Figure 2. Cross-section of the Love wave waveguide loaded with an infinitesimally thin layer of
lossless mass with a surface density σ

[
kg/m2]. Love surface waves propagate in the direction of axis

x1. Shear horizontal (SH) mechanical displacement u3 of the Love wave is polarized along the x3 axis.

The coefficient of mass sensitivity S
vp
σ of Love wave sensors is defined as:

S
vp
σ =

1
vp

dvp

dσ
(35)

It can be shown [20] that the dispersion equation for Love surface waves propagating
in lossless waveguides loaded with an infinitesimal layer of lossless mass density σ is
formally identical to Equation (21) developed in Section 3.4 in this paper, providing that
the term c(0)44 q0 is replaced by −σ · ω2.
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As a result, the modified dispersion equation is an implicit function of the phase
velocity vp and surface mass density σ, what can be symbolically written as F

(
vp, σ

)
= 0.

The derivative dvp/dσ in Equation (35) can be calculated analytically from the modified
dispersion equation, using the rules of differentiation of implicit functions. In fact, the
differentiation of the modified dispersion equation F

(
vp, σ

)
= 0 with respect to vp and σ

leads to the following relation
(
dvp/dσ

)
∂F/∂vp + (dσ/dσ)∂F/∂σ = 0. Consequently, the

derivative dvp/dσ can be written as:

dvp

dσ
= − ∂F/∂σ

∂F/∂vp
(36)

By virtue of Equations (35) and (36) the coefficient of mass sensitivity S
vp
σ is given by

the following explicit formula [19,20]:

S
vp
σ =

ω2 1
k

{(
c(1)44 q1

)
+
(

c(2)44 q2

)
· tan(q1h1)

}
h1

cos2(q1h1)
∂q1
∂k

{(
c(1)44 q1

)2
+
(

c(2)44 q2

)
(σω2)

}
+tan(q1h1)

{
2q1

(
c(1)44

)2 ∂q1
∂k +c(2)44

∂q2
∂k (σω2)

}
+c(1)44

∂q1
∂k ·

{
(σω2)−

(
c(2)44 q2

)}
−c(2)44

∂q2
∂k

(
c(1)44 q1

) (37)

where h1 is the thickness of the guiding surface layer, q1 and q2 are, respectively, transverse
wavenumbers of the Love wave in the guiding surface layer and in the substrate and

∂q1/∂k = −k/
√

k2
1 − k2; ∂q2 /∂k = k/

√
k2 − k2

2.
It has to be stressed that Equation (37) is a closed form analytical formula for the mass

coefficient of sensitivity S
vp
σ , as a function of ω, h1, vp, c(1)44 , ρ1, c(2)44 , ρ2, and σ. Equation (37)

will be used in the subsequent numerical calculations of the mass sensitivity S
vp
σ for Love

surface waves propagating in waveguides composed of a PMMA guiding surface layer
deposited on the ST-Quartz substrate (see Section 5.2).

One may wonder what on earth is common between the two waveguide configurations
shown in Figures 1 and 2. First waveguide is loaded with a semi-infinite lossy Newtonian
liquid (Figure 1) and second with an infinitesimally thin layer of a lossless mass (Figure 2).
The first waveguide is lossy with a non-zero amplitude of the Love wave extending from
x2 = −∞ to x2 = +∞ and the second is lossless with the amplitude of the Love wave
limited to the positive half-space x2 = (0,+∞).

Our answer to the above question is the following: the common factor shared by these
two seemingly dissimilar waveguide configurations is the fact that in both of them the
phase velocity vp of the Love wave is affected by the loading medium, i.e., by a semi-infinite
lossy Newtonian liquid or an infinitesimal layer of lossless mass.

Now, we are in a position to go one step further and identify the suspect physical
phenomenon, occurring in both waveguides, which is responsible for the phase delay
(velocity changes) of the Love wave propagating in both structures. Since loading with a
Newtonian liquid gives rise to a non-zero complex Poynting vector P(0)

2 (x2 = 0) 6= 0 at the

interface x2 = 0 we postulate that the imaginary part ImP(0)
2 of the average power flow

P(0)
2 in the transverse direction x2 in the Newtonian liquid is connected with the phase

delay and velocity changes of the Love surface wave. By contrast, the real part ReP(0)
2 of

the average power flow P(0)
2 is connected to losses of the Love wave.

4.2. Equivalent Inertial Properties of the Newtonian Liquid Seen by Love Surface Waves

The amplitude of Love surface waves, propagating in waveguides loaded with a
Newtonian liquid, decays very rapidly in the Newtonian liquid, as a function of the
transverse direction x2 (see Figure 1). The penetration depth δ0 of the Love wave into a
Newtonian liquid equals δ0 = 1/Req0, where the real part Req0 = a0 of the transverse
wave number q0 of the Love wave in the Newtonian liquid is given by Equation (29). The
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penetration depth δ0 of the Love wave in the Newtonian liquid is given approximately
by [27]:

δ0 ≈
√

2η0

ωρ0
(38)

where η0 is the viscosity and ρ0 the density of the Newtonian liquid.
Now, we will answer another question. Can semi-infinite Newtonian liquid, with

an exponentially decaying mechanical displacement of the Love wave, be replaced by an
equivalent thin layer of a thickness h′, with a constant mechanical displacement of the
Love wave equal to u(0)

3 (x2 = 0) that provides the same changes in phase velocity vp of the
Love wave?

To answer this question we will determine the average power flow P(0)
2 =

∫ 0
−∞ P(0)

2 (x2)
dx2 (per unit width along axis x3) in the transverse direction x2, in the loading Newtonian
liquid, where P(0)

2 (x2) is the complex Poynting vector in the Newtonian liquid. Since

P(0)
2 (x2) = P(0)

2 (x2 = 0)e2Re(q0)x2 , see Equation (26), the average power flow in the Newto-
nian liquid equals:

P(0)
2 =

0∫
−∞

P(0)
2 (x2)dx2 = P(0)

2 (x2 = 0)/2Re(q0) (39)

By definition, the penetration depth δ0 of the Love wave into the loading Newtonian
liquid equals δ0 = 1/Req0. Therefore, we can write that:

P(0)
2 = P(0)

2 (x2 = 0)δ0/2 (40)

As a result, the sought equivalent thickness h′ is given by:

h′ = δ0/2 (41)

Since, for thin layers of a lossless mass, the surface mass density of the load can be
written as σ = ρ0h′, we postulate that the effective mass loading exerted by a semi-infinite
Newtonian liquid is equivalent to mass loading of a thin layer of lossless mass of thickness
δ0/2 and density ρ0. As a result, we can write:

σ = ρ0δ0/2 =

√
ρ0η0

2ω
(42)

where σ given by Equation (42) represents the equivalent surface mass density [kg/m2] of
a semi-infinite Newtonian liquid loading Love wave waveguide. Note that, the equivalent
surface mass density σ depends on density ρ0 and viscosity η0 of the Newtonian liquid as
well as on angular frequency ω of the Love wave.

Now, we are able to determine the coefficient of mass sensitivity S
vp
σ of Love wave

sensors, loaded with a semi-infinite Newtonian liquid, using Equation (37) with the effective
surface mass density σ given by Equation (42).

The coefficient of mass sensitivity S
vp
σ will be plotted in Section 5.2, as a function of

frequency f and thickness of the elastic surface layer h1.

5. Numerical Results

The analytical formulas obtained in this paper will be illustrated by numerical results
performed for the Love wave waveguide structure showed in Figure 1 (Section 2) and
Figure 2 (Section 4.1) with the waveguide parameters enclosed in Table 1.
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Table 1. Material and geometrical parameters of the Love wave waveguide.

Waveguide
Component Material Type Thickness

[µm]
Density
[kg/m3]

Shear Modulus
[GPa]

Phase Velocity of
SH Bulk Waves

[m/s]

Elastic surface layer PMMA h1 = 0− 10 ρ1 = 1180 c(1)44 = 1.43 v1 = 1100
Elastic substrate ST-cut Quartz semi-infinite ρ2 = 2650 c(2)44 = 67.85 v2 = 5060

The necessary condition for Love surface waves to exist is as follows: v1 < v2, i.e.,
the elastic surface layer must be slower than the elastic substrate (see Table 1). In the
PMMA elastic surface layer the phase velocity of bulk SH waves v1 = 1100 m/s and in
the ST-Quartz substrate v2 = 5060 m/s. Both materials are assumed to be lossless and
frequency independent. The piezoelectric effect in the ST-Quartz substrate was neglected
except for the phase velocity v2 of bulk SH waves in Quartz (see Appendix A for more
details). Since the piezoelectric effect in the Quartz is relatively weak (∼0.3%) the above
assumption can be considered as a good first order approximation.

5.1. Average Power Flow P(0)
2 in the Transverse Direction x2 in the Newtonian Liquid

The average power flow P(0)
2 (Equation (39)) in the transverse direction x2 in the New-

tonian liquid is a complex quantity; therefore, it can be written as P(0)
2 = ReP(0)

2 + jImP(0)
2 .

The active part ReP(0)
2 of the average power flow P(0)

2 is converted to heat in the Newtonian

liquid. The reactive part ImP(0)
2 of the average power flow P(0)

2 is responsible for storage of
the energy in the Newtonian liquid and ultimately leads to phase delay of the Love wave
and changes in its phase velocity.

In Figures 3 and 4 we present the reactive part ImP(0)
2 of the average power flow P(0)

2 in
the Newtonian liquid, as a function of frequency f and thickness of the elastic surface layer
h1. It is evident that ImP(0)

2 exhibits pronounced maxima as a function of f and h1. The

plots of ImP(0)
2 are normalized by the active average power flow Re(P1), see Equation (34)

in the direction of propagation x1, in the entire waveguide, shown in Figure 1.
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Figure 3. Reactive part ImP(0)
2 of the average power flow P(0)

2 in the transverse direction x2, in the
Newtonian liquid, normalized by the active average power flow Re(P1) in the direction of propagation
x1, in the entire waveguide, shown in Figure 1. The plots are drawn as a function of frequency f ,
for different values of thickness h1 of guiding surface layer h1 = 0.5, 1 and 2 µm. The waveguide is
loaded with a Newtonian liquid of density ρ0 = 1000 kg/m3 and viscosity η0 = 1 mPas.
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Figure 4. Reactive part ImP(0)
2 of the average power flow P(0)

2 , in the transverse direction x2, in the
Newtonian liquid, normalized by the active average power flow Re(P1) in the direction of propagation
x1, in the entire waveguide, shown in Figure 1. The plots are drawn as a function of thickness h1 of
the elastic surface layer, for different values of frequency f of the wave f = 50, 100 and 200 MHz.
The waveguide is loaded with a Newtonian liquid of density ρ0 = 1000 kg/m3 and viscosity
η0 = 1 mPas..

5.2. Coefficient of Mass Sensitivity S
vp
σ

By contrast to the average power flow P(0)
2 , presented in Section 5.1, the coefficient of

mass sensitivity S
vp
σ is a real-valued quantity, since by definition (Equation (35)) it is related

only to changes in phase velocity of the Love wave.
The coefficient of mass sensitivity S

vp
σ of Love wave sensors, loaded with a semi-

infinite Newtonian liquid, was determined using Equation (37) with the effective surface
mass density σ of the Newtonian liquid given by Equation (42).

The coefficient of mass sensitivity S
vp
σ is plotted in Figures 5 and 6, as a function of

frequency f and thickness of the elastic surface layer h1.
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waveguides loaded with a semi-infinite Newtonian liquid with an equivalent surface mass den-
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for Love surface waves propagating in

waveguides loaded with a semi-infinite Newtonian liquid with an equivalent surface mass den-
sity σ = ρ0δ0/2, as a function of thickness h1 of the elastic surface layer, for different values of
frequency f = 50, 100 and 200 MHz.

6. Discussion

In this paper, we investigated two phenomena occurring in Love wave waveguides
loaded with a semi-infinite Newtonian liquid of a viscosity η0 and density ρ0. First, the
average power flow P2 =

∫ ∞
−∞ P2(x2)dx2, in the transverse direction x2, and the correspond-

ing complex Poynting vector P(0)
2 (x2 = 0), evaluated at the interface x2 = 0, between the

waveguide and the Newtonian liquid. Second, the change ∆vp/vp in phase velocity of the
Love wave, represented by the mass coefficient of sensitivity S

vp
σ .

At first glance, these two phenomena may seem to be completely unrelated. However,
in this paper we showed that the first phenomenon provides physical basis for the second
one. In fact, if the average reactive power flow across the interface between the waveguide
and the Newtonian liquid, represented by the imaginary part of the Poynting vector
ImP(0)

2 (x2 = 0) = 0 vanishes then the phase velocity of the Love wave remains unchanged
and consequently S

vp
σ = 0.

It is commonly accepted that the attenuation of the Love wave is caused by viscous
properties of the Newtonian liquid, represented by its viscosity η0. On the other hand, the
change in phase velocity of the Love wave can be attributed to inertial properties of the
Newtonian liquid, represented by its density ρ0. To be more specific, both phenomena,
i.e., the attenuation and changes in phase velocity of the Love wave depend on both
parameters of the Newtonian liquid, namely on η0 and ρ0 in a quite involved manner (see
Equations (29) and (30)).

By definition, the mass coefficient of sensitivity S
vp
σ ≈ ∆vp/∆σ/vp quantifies changes

in phase velocity of the Love wave due to loading with an infinitesimally thin layer of a
lossless mass. However, in this paper we showed that mass loading with a semi-infinite
Newtonian liquid is equivalent to loading with a thin layer of mass of density ρ0 and
thickness δ0/2, where δ0 is the penetration depth of the Love wave into the Newtonian
liquid. As a result, we are able to determine the mass coefficient of sensitivity S

vp
σ for a

semi-infinite Newtonian liquid loading the waveguide assuming that the effective surface
mass density of a semi-infinite Newtonian liquid equals ∆σ = ρ0δ0/2

[
kg/m2].
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To reduce the magnitude of numbers of on Y-axis in Figures 3 and 4, the reactive part
ImP2 of the average power flow P2 in the Newtonian liquid in the transverse direction x2,
was normalized by the active part ReP1 of the average power flow P1 in the direction of
propagation x1.

7. Conclusions

Based on the results of the theoretical analysis and the corresponding numerical
calculations, obtained in this paper, we can draw the following conclusions:

1. The non-zero complex Poynting vector P(0)
2 (x2) in the transverse direction x2, eval-

uated at the interface x2 = 0, between the loading Newtonian liquid and the elastic
surface layer of the waveguide, represents extra active and reactive power fluxes
occurring in the Love wave waveguide loaded with a Newtonian liquid.

2. The active part ReP2 of the average power flow P2 in the transverse direction x2 feeds
viscous losses in the Newtonian liquid and therefore is connected to attenuation of
the Love wave.

3. The reactive part ImP2 of the average power flow P2 in the transverse direction x2 in
the Newtonian liquid delays propagation of the Love wave in the direction x1 and
therefore is connected with changes of the phase velocity of the Love wave and in
turn with the coefficient of mass sensitivity S

vp
σ of the sensor.

4. The changes in phase velocity ∆vp/vp of the Love wave, propagating in waveguides
loaded with a semi-infinite Newtonian liquid of a viscosity η0 and density ρ0 and the
changes in phase velocity in waveguides loaded by a lossless layer of mass with a
density ρ0 and thickness δ0/2, are the same, where δ0 is the penetration depth of the
Love wave into the Newtonian liquid.

5. The maxima of the coefficient of mass sensitivity S
vp
σ and the maxima of the reactive

part of the average power flow in the transverse direction x2 occur virtually for the
same values of the frequency f and thickness h1 of the elastic surface layer.

The results of the theoretical analysis and numerical calculations presented in this
paper provide new physical insight for the coefficient of mass sensitivity S

vp
σ of Love wave

sensors. The relation between the extra reactive power flow across the interface x2 = 0,
separating the loading Newtonian liquid and the elastic surface layer of the waveguide, and
the mass sensitivity S

vp
σ can be a basis of optimal design of ultrasonic Love wave sensors.
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Appendix A

Quartz Material as a Substrate in Love Wave Sensors

Quartz crystal belongs to 32 class of the trigonal system of symmetry (see page
207 in [3]) and in general have 5 independent elastic constants c11, c12, c13, c14, c44 and
c66 = (c11 − c12)/2), 2 piezoelectric constants e11, e14 and 2 dielectric constants ε11, ε33.

However, the phase velocity v2 =
√

c(2)44 /ρ2 of pure shear SH volume waves in Quartz,
polarized along the X crystallographic axis and propagating in directions located in the
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Y-Z plane of symmetry, depends only on one shear modulus of elasticity c(2)44 given by the
following Formula (A1):

c(2)44 = c66sin2β + c44cos2β− c14sin(2β) +

[
e11sin2β− (e14/2)sin(2β)

]2
ε11sin2β + ε33cos2β

(A1)

where the angle β = 42.5◦ for the ST-Quartz crystal. Substituting the appropriate values
for c66, c44, c14, e11, e14, ε11, ε33 (see pages 148 and 164 in [3]) and ρ2 = 2650 kg/m3 one

obtains v2 =
√

c(2)44 /ρ2 = 5060 m/s. Therefore, this value of the phase velocity of bulk SH
waves in ST-Quartz was used in calculations presented in this paper.
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16. Kiełczyński, P.; Szalewski, M.; Balcerzak, A.; Wieja, K. Propagation of ultrasonic Love wave in non-homogeneous elastic

functionally graded materials. Ultrasonics 2016, 65, 220–227. [CrossRef] [PubMed]
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