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Objectives of the study  

A. Scientific objective of the Study is to develop theoretical foundations and 

creating a mathematical model of the phenomenon of propagation of transverse 

surface Love waves in a layered viscoelastic media  
 

B. In future, establishing on this basis a new non-destructive method for the 

identification of rheological parameters (elasticity, viscosity, density) of viscoelastic 

media. New method that uses surface Love waves will be non-destructive, rapid, 

accurate and computerized without drawbacks of classical mechanical methods.  
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This problem has not been solved 

yet in the worldwide literature 

Fig.1. Lossless (elastic) Love wave 

waveguide (surface layer plus substrate) 

loaded at the surface x2 = - D with a lossy 

viscoelastic medium of the shear modulus 

G and viscosity η. 
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Fig.2. SH (Shear Horizontal) surface Love wave waveguide.  

Love wave propagates along 𝑥1 axis.  

Love wave has only one shear component of mechanical displacement along 𝑥3 axis.  

-D 

 0 

 elastic layer 

m  ;  r1 

 elastic substrate 

(half – space) 



Importance of the problem 

A. Large quantity of processed plastics and polymers (milion tons a year).  

     Trial and Error method is still often used in the plastic industry   

 

B. Theory of sensors (bio and chemosensors).  

     Presented in this study model can serve as a mathematical model of sensors.  

To date, there is no mathematical model of sensors based on the SH waves.    

 

D. In geophysics and seismology. Exploration of natural resources. Love waves  

     propagating in layered geological  structures coverd with a liquid (e.g., Ocean).  

     Lack of the theory.  

 

E. In microelectronics (MEMS – Micro Electro Mechanical Systems).  

    Examination of the quality of thin layers. 
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Twisted Railroad Tracks  

 

 

 

 

 

 

 

 

 

 

Fig.4. Example of structural damages due to SH displacement of    Love surface waves 
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Augustus, Edward,  

Hough Love - 1911 

Fig.3. Example of structural damages due to SH 

displacement of Love surface waves 
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Mechanical methods for determining the 

rheological properties of viscoelastic media  

A. Couette (rotating cylinders) – 1890  
 

B. Falling ball (Hoppler - 1932)   
 

C. Falling sinker (e.g., needle, cone, cylinder)  
 

D. Cone-plate 
 

E. Capillary tube viscometer (Poiseuille)  

 

Disadvantages:  

 

a) Presence of moving parts 

b) Require special sophisticated equipment 

c) Measurements are tedious and time consuming 

d) Large dimensions 

e) Difficult to computerize 

f) Cannot operate in real-time 

g) Only laboratory methods (cannot be employed on-line)     
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Application of bulk ultrasonic waves for the 

determination of the rheological parameters  

of viscoelastic media  
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For example: Plate SH (Shear Horizontal) ultrasonic waves, Torsional waves, 

Lamb waves.   

 

1. Standing waves (resonators) 

    e.g., torsionally oscillating piezoelectric quartz rod, vibrating fork,   

    vibrating cantilever  (2008) – complicated setup, optical readoud  

 

2. Travelling waves (waveguides) 

 

The acoustic energy is distributed in the entire volume of resonator or 

waveguide. The contact with an investigated viscoelastic liquid takes place 

on their surface.  

 

3. Low sensitivity of sensors that use bulk ultrasonic waves.   

 



Application of surface ultrasonic waves 

(i.e., Love and B-G waves) for  

the determination of the rheological 

parameters of viscoelastic media  

 
• Love waves (1911), Bleustein-Gulyaev (B-G) waves (1968)  

 

• The energy of SH-SAW is concentrated in the vicinity of 

     the waveguide surface. Thus the SH-SAW velocity and 

     attenuation strongly depend on the boundary conditions  

     on the waveguide surface.  

 

• In consequence, the sensitivity of the viscosity sensors using SH-SAW 

(e.g., Love waves) can be several orders larger than the sensitivity of 

the sensors employing bulk shear acoustic waves.  
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Properties of Love waves  

• One component of the mechanical displacement. (Waves undergo dispersion). 
(Frequency range from 0.001 Hz to 500 MHz)  

 

• Transverse (shear horizontal) surface wave  

   does not exist in a homogeneous elastic half-space 
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Fig.5. Distribution of the mechanical 

displacement with depth for 

subsequent modes.   

Fig.4. Distribution of the mechanical 

displacement with depth.  

𝑓1 > 𝑓2.  



Advantages of Love waves sensors   
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1. Absence of moving parts 

 

2. Operation in real time 

 

3. Short measuring time 

 

4. High sensitivity 

 

5. Can operate at high-pressure (up to 1 GPa),   

     and elevated temperatures (up to 400  ºC)  

 

6.  Low power consumption  

 

7.  Small dimensions, simple and robust construction of the sensor 

 

8.  Possibility of computerization 

 

9.  Output signal is electrical  

 

 



Physical Model of Love Wave Sensor 
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a) Typical dimensions  - 1 x 5 x 20 mm 

b) Circuit configuration  -  resonator or delay line 

c) Frequency range  -  50 - 500 MHz 

d) Wavelength range  - 10 - 100 μm 
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Theory of Love waves propagating in 

viscoelastic layered media.  

(State of the art)  
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The problem of Love wave propagation in viscoelastic media  is still not 

solved.   
 

1) K. Sezawa, K. Kanai, Damping of periodic visco-elastic waves with 

increase in focal distance, Bulletin of the Earthquake Research Institute 

(Tokyo), 16 (1938) 491-503.  

2) T. K. Das, P. R. Sengupta,L. Debnath, Effect of gravity on viscoelastic 

surface waves in solids involving time rate of strain and stress of higher 

order, International Journal of Mathematics and Mathematical Sciences, 18 

(1995) 71-76.  

3) M. Goto, H. Yatsuda and J. Kondoh, Effect of viscoelastic film for shear 

horizontal surface acoustic wave on quartz, Japanese Journal of Applied 

Physics, Volume 54, Number 7S1 (2015).  

4) G. McHale, M.I. Newton, and F. Martin, Theoretical mass, liquid, and 

polymer sensitivity of acoustic wave sensors with viscoelastic guiding 

layers, Journal of Applied Physics, 93 (2003) 675-690.  

 



Mathematical Model:  

Direct Sturm-Liouville Problem   
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Direct Sturm-Liouville Problem for Love's wave propagating in the layered 

viscoelastic waveguide consists in determining the phase velocity and 

attenuation of Love wave, knowing all the material parameters of the 

waveguide and viscoelastic medium for a fixed frequency.  

Material parameters 

 

  

Wave velocity and attenuation 

Fig.6. Love wave waveguide loaded with 

a viscoelastic medium (liquid).   

  𝜇 = 𝐺′ + 𝑗𝐺′′-   complex shear modulus;   𝑡𝑎𝑛𝛿 = 𝐺′′ 𝐺′  - loss tangent; 

                          𝛿 is a phase shift between stress and strain;  𝑗 = −1 1 2 .      

𝑘 = 𝑘0 + 𝑗𝛼   -   complex wave number of the Love wave  

𝜇𝐿; 

 𝜇1 ; 

 

 𝜇2 

  

𝐿 𝑦 𝑥 = 𝜆𝑦 𝑥         

𝜆 = eigenvalue       

𝑦(𝑥) = eigenvector  

  {𝜆, 𝑦 𝑥 } 



Assumptions 
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1. We consider (fundamental) first mode (a kind of vibration) of Love  

    waves 

 

2. The substrate and surface layer are elastic, isotropic,  

    homogeneous and lossless media  

 

3. The surface layer is loaded by a viscoelastic medium  

 

4. There is no variation along the axis (𝑥3)  
 

5. Losses are introduces only by the presence of a viscoelastic  

    medium 

 

6. Mechanical displacement  

    of the Love wave:  

    

 

𝑢3(𝑥1, 𝑥2, 𝑡) = 𝑓(𝑥2) ∙ 𝑒𝑥𝑝 𝑗 𝑘 ∙ 𝑥1 − 𝜔𝑡  



Mathematical model:  

Differential equations of motion  
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2) In elastic surface layer:    0 > 𝑥2 > −𝐷  :   

3) In elastic substrate:      (𝑥2 > 0):  

(3) 

(2) 
1

𝑣1
2

𝜕2𝑢3

𝜕𝑡2 =
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 𝑢3 

1

𝑣2
2

𝜕2𝑢3

𝜕𝑡2 =
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 𝑢3 

where: 𝑣1 = (𝜇1/𝜌1)
1/2   is the bulk shear wave velocity in the layer 

where: 𝑣2 = (𝜇2/𝜌2)1/2 is the bulk shear wave velocity in the substrate.  

1

𝑣𝐿
2

𝜕2𝑢3

𝜕𝑡2 =
𝜕2

𝜕𝑥1
2 +

𝜕2

𝜕𝑥2
2 𝑢3 

1) In viscoelastic medium:         𝑥2 < −𝐷 : 

(1) 

where: 𝑣𝐿 = (𝜇𝐿/𝜌𝐿)
1/2 is the complex bulk shear wave velocity in the viscoelastic 

medium 



Propagation wave solution 

   

In elastic surface layer: 

𝑢3
(1)

= 𝑊(𝑥2) ∙ 𝑒𝑥𝑝 𝑗 𝑘 ∙ 𝑥1 − 𝜔𝑡  

𝑊′′ 𝑥2 − 𝑘1
2 − 𝑘0

2 ∙ 𝑊 𝑥2 = 0 

 𝑊 𝑥2 = 𝐶1 ∙ sin 𝑞𝐵 ∙ 𝑥2 + 𝐶2 ∙ cos 𝑞𝐵 ∙ 𝑥2  

𝑞𝐵 = 𝑘1
2 − 𝑘2 1/2 𝑘1 = 

𝜔

𝑣1
 ;   𝐶1  and 𝐶2  are arbitrary constants  

 𝜏23
(1)

= 𝜇1 
𝜕𝑢3

(1)

𝜕𝑥2
 = 𝐶1 ∙ 𝜇1 ∙ 𝑞𝐵 ∙ cos 𝑞𝐵 ∙ 𝑥2 − 𝐶2 ∙ 𝜇1∙ 𝑞𝐵 ∙ sin 𝑞𝐵 ∙ 𝑥2 ∙ 𝑒𝑥𝑝 𝑗 𝑘𝑥1 − 𝜔𝑡  

(0 > 𝑥2> −𝐷)  

Mechanical displacement:  

Shear stress component: 

where: 

(4) 

(5) 

(6) 

(7) 

We postulate the solution  

in the form 𝑞𝐵:  
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𝑞𝐵 is a complex quantity  



In elastic substrate:  (𝑥2> 0)  

𝑈′′ 𝑥2 − 𝑘2 − 𝑘2
2 ∙ 𝑈 𝑥2 = 0 

𝑢3
(2)

= 𝑈(𝑥2) ∙ 𝑒𝑥𝑝 𝑗 𝑘 ∙ 𝑥1 − 𝜔𝑡  

𝑈 𝑥2 = 𝐶3 ∙ 𝑒𝑥𝑝 −𝑏 ∙ 𝑥2  

𝑏 = 𝑘2 − 𝑘2
2 1/2 𝑘2 = 

𝜔

𝑣2
  𝑅𝑒 𝑏 > 0 

𝜏23
(2)

= 𝜇2 
𝜕𝑢3

(2)

𝜕𝑥2
 = 𝐶3 ∙ 𝜇2 (−𝑏) ∙ 𝑒𝑥𝑝 −𝑏 ∙ 𝑥2 ∙ 𝑒𝑥𝑝 𝑗 𝑘𝑥1 − 𝜔𝑡   

where: 

Mechanical displacement:  

Shear stress component:  

(8) 

(9) 

(11) 

(10) 

𝐶3 is an arbitrary constant 
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𝑏 is a complex quantity  



In viscoelastic medium:  

19    

               

  

          (𝑥2 < −𝐷) 

𝑢3
𝐿 = 𝑉(𝑥2) ∙ 𝑒𝑥𝑝 𝑗 𝑘 ∙ 𝑥1 − 𝜔𝑡  

𝑉′′ 𝑥2 − 𝑘2 −
𝜌𝐿𝜔

2

𝜇𝐿 ∙ 𝑉 𝑥2 = 0 

𝑉 𝑥2 = 𝐶4 ∙ 𝑒𝑥𝑝(𝜆1∙ 𝑥2) 

𝜆1 = 𝑘2 − 𝜌𝐿𝜔2

𝜇𝐿   𝑅𝑒 𝜆1 > 0 

𝜏23
(𝐿)

= 𝜇𝐿 𝜕𝑢3
𝐿

𝜕𝑥2
 = 𝐶4 ∙ 𝜇𝐿 ∙ 𝜆1 ∙ 𝑒𝑥𝑝 𝜆1 ∙ 𝑥2 ∙ 𝑒𝑥𝑝 𝑗 𝑘𝑥1 − 𝜔𝑡  

where: 

𝐶4  is an arbitrary constant 

Shear stress component : 

Mechanical displacement:  (12) 

(13) 

(15) 

(14) 

𝜆1 is a complex quantity  



Boundary conditions 

1. On the viscoelastically loaded waveguide surface (𝑥2 = −𝐷), 

continuity of the displacement field 𝑢3 and stress 𝜏23:  

 

 

 

𝜏23
𝐿

 
𝑥2=−𝐷

= 𝜏23
1

 
𝑥2=−𝐷

 

(16) 

2. Continuity of the displacement field 𝑢3 and stress 𝜏23 at the interface 

between the elastic layer and the substrate (𝑥2= 0):  

 

                                     𝑢3
1

 
𝑥2=0

= 𝑢3
2

 
𝑥2=0

                                      (18)  

                                      𝜏23
1

 
𝑥2=0

= 𝜏23
2

 
𝑥2=0

                                      (19)  

  

3. 𝑢3 = 0  when  𝑥2 → ±∞.  
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𝑢3
𝐿

 
𝑥2=−𝐷

= 𝑢3
1

 
𝑥2=−𝐷

 

(17) 



    Complex dispersion equation  21 
     

  

   

       

This leads to the following complex dispersion relation:  

[M] 
𝐶1 

𝐶2 

𝐶3 
= 0 

[M] = 0 det 

Necessary condition for nontrivial solution is that the determinant of 

this matrix M equals zero.  

(20) 

(21) 

[M] =  4x4 Matrix 

 After substitution of Eqs. (6), (10), (14) and (7), (11), (15) into boundary 

conditions (16 -19), the set of four linear and homogeneous equations for 

unknown coefficients 𝐶1, 𝐶2, 𝐶3 and 𝐶4 is obtained.  

𝐶4 



Complex dispersion equation 

Analytical form  
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In Eq.22 the quantities:  𝜇𝐿, 𝜆1, 𝑏 𝑎𝑛𝑑 𝑞𝐵 are complex:  

   

                       𝜆1 = 𝑘0
2 − 𝛼2 + 𝑗 ∙ 2 ∙ 𝑘0 ∙ 𝛼 − 𝜌𝐿𝜔2

𝜇𝐿                                   (23) 

                       𝑞𝐵 = 𝑘1
2 − 𝑘0

2 + 𝛼2 + 𝑗 ∙ 𝑘1
2  −  2 ∙ 𝑘0 ∙ 𝛼                        (24)  

                       𝑏 = 𝑘0
2 − 𝛼2 − 𝑘2

2 + 𝑗 ∙ 2 ∙ 𝑘0 ∙ 𝛼                                     (25)  

                       𝜇𝐿 = (𝐺 − 𝑗𝜔𝜂) = 𝐺 1 − 𝑗𝑡𝑎𝑛𝛿    ;   (for K-V model)          (26)  

where: 𝑘1 = 𝜔 𝑣1  ; 𝑘2 =
𝜔

𝑣2
  ;  𝑘0 =

𝜔

𝑣𝑝
  ; 𝛼  and  𝑡𝑎𝑛𝛿 =

𝜔𝜂

𝐺
   are real variables.  

(22) 

𝐹(𝑘, 𝜔) = sin 𝑞𝐵𝐷 ∙ 𝜇1
2 ∙ 𝑞𝐵

2 − 𝜇2 ∙ 𝑏 ∙ 𝜆1 ∙ 𝜇𝐿 − cos 𝑞𝐵𝐷 ∙ 𝜇1 ∙ 𝑞𝐵 ∙ 𝜇2 ∙ 𝑏 + 𝜆1 ∙ 𝜇𝐿 = 0 

𝐹(𝑘, 𝜔) is an implicit function of (k, ω)   



23 Separating real and imaginary parts of 

the complex dispersion equation (22), 

we obtain:  

Modified Powell hybrid method:   Program MATHCAD and SCILAB 

 

 

(27) 

(28) 

𝑣𝑝 = 𝜔 𝑘0    -   Love wave phase velocity  

𝛼   -  Love wave attenuation in Np/m  

 

This is a system (27-28) of two real nonlinear algebraic equations.  

The unknowns are: (𝑘0 and 𝛼).  

The parameters are:  𝜇1, 𝜌1,  𝜇2 ,  𝜌2 , 𝜌𝐿, 𝐺, 𝜂, 𝐷 𝑎𝑛𝑑 𝜔.  

 𝑅𝑒 𝐹 = 𝐴  𝜇1, 𝜌1,  𝜇2 , 𝜌2 , 𝜌𝐿, 𝐺, 𝜂, 𝐷, 𝜔; 𝑘0, 𝛼 = 0 

𝐼𝑚 𝐹 = 𝐵  𝜇1, 𝜌1,  𝜇2 , 𝜌2 , 𝜌𝐿, 𝐺, 𝜂, 𝐷, 𝜔; 𝑘0, 𝛼 = 0  

𝑘 = 𝑘0 + 𝑗𝛼   -   complex wave number of the Love wave   



Numerical calculations  
24 
     

  

   

       

Numerical calculations were performed in the range:         f = from 0 to 1000 MHz  

Program Mathcad and Scilab 

Material parameters: (typical for biosensors)  
 

For (Polymethylmethacrylate)                            For   ST-90° X   Quartz   

PMMA 

 
𝜇1 = 1.43 ∙ 109 𝑁/𝑚2                                                  𝜇2 = 67.85 ∙ 1010 𝑁/𝑚2   

 𝜌1 = 1.18 ∙ 103  𝑘𝑔 𝑚3                                                 𝜌2 = 2.56 ∙ 103  𝑘𝑔 𝑚3   

𝑣1 = 𝜇1 𝜌1 1/2 = 1100 𝑚/𝑠                                       𝑣2 = 𝜇2 𝜌2 1/2 = 5060𝑚/𝑠  

Thickness: 𝐷 =  400 µ𝑚  
 

Viscoelastic material: 𝜂 = 1 𝑚𝑃𝑎𝑠,     

                                  𝐺 = 5 × 104 

                                   𝜌𝐿 = 1 × 103  𝑘𝑔 𝑚3     



Rheological models of viscoelastic 

materials considered in this study 

(31) 

(32) 

(33) 

1) Kelvin-Voigt model 

2)  Maxwell model 

3)  Newton model 

𝜇𝐿 = 𝐺 − 𝑗𝜔𝜂 = 𝐺 1 − 𝑗𝑡𝑎𝑛𝛿   

𝜇𝐿 = 𝐺
𝜔𝜏 2

1 + 𝜔𝜏 2 − 𝑗𝐺
𝜔𝜏

1 + 𝜔𝜏 2 

𝜇𝐿 = −𝑗𝜔𝜂 

𝑡𝑎𝑛𝛿 = 𝜔𝜂/𝐺 

𝜔𝜏 = ω𝜂/𝐺     ;      𝑡𝑎𝑛𝛿 = 1/𝜔𝜏 
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Fig.8. a) Liquid I                                         b) Liquid II   

Fig.7. a) Solid I                                           b) Solid II  

Standard rheological models of  

viscoelastic materials 

27 
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Love wave phase velocity dispersion 

curves  

Fig.9. Phase velocity of the Love surface wave, propagating in a lossless 

elastic waveguide loaded with three different types of lossy viscoelastic 

materials, i.e., Kelvin - Voigt, Newton and Maxwell, in low frequency limit: 

tan𝛿 ∈  0.125 −  1.25 , 𝐺 =  5 ×  104 𝑃𝑎, 𝜂 =  1 𝑚𝑃𝑎 ∙ 𝑠.   
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Love wave phase attenuation dispersion 

curves  

Fig.10. Attenuation of the Love surface wave, propagating in a lossless 

elastic waveguide loaded with three different types of lossy viscoelastic 

materials, i.e., Kelvin - Voigt, Newton and Maxwell, in the low frequency 

limit: tan𝛿 ∈  [0.125 –  1.25], 𝐺 =  5 × 104 𝑃𝑎, 𝜂 =  1 𝑚𝑃𝑎 ∙ 𝑠.  
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Love wave phase attenuation dispersion 

curves  

Fig.11. Attenuation of the Love surface wave, propagating in a lossless 

elastic waveguide, loaded with 3 different types of lossy viscoelastic 

materials, i.e., Kelvin - Voigt, Newton and Maxwell. Low and medium 

frequency limits: tan𝛿 ∈  [0.125 −  12.5],  𝐺 =  5 × 104 𝑃𝑎, 𝜂 = 1 𝑚𝑃𝑎 ∙ 𝑠.  
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Love wave phase attenuation dispersion 

curves  

Fig.12. Attenuation of the Love surface wave, propagating in a lossless 

elastic waveguide, loaded with 3 different types of lossy viscoelastic 

materials, i.e., Kelvin - Voigt, Newton and Maxwell. Low, medium and high 

frequency limits: tan𝛿 ∈  [0.125 −  125.0],  𝐺 =  5 × 104 𝑃𝑎, 𝜂 = 1 𝑚𝑃𝑎 ∙ 𝑠.  



Conclusions  
31    

  

  

   

  

   

  

  

   

1. The results show that the Love waves can propagate in the 

invesigated layered viscoelastic media 

 

2. The impact of the rheological parameters on dispersion  curves 

of the phase velocity and attenuation of Love wave was 

evaluated.  

     Love wave phase velocity differs slightly for the Newtonian,  

     Maxwelian and Kelvin-Voigt materials.     

 

3. In the low frequency limit tanδ ≪ 1 the attenuation of the Love  

     wave due to the Maxwellian liquid and that due to the Newtonian  

     liquid are almost the same.  

  

4. In the high frequency limit tanδ ≫ 1 the attenuation of the Love   

    wave due to the Kelvin -Voigt material and that due to the  

    Newtonian liquid are almost identical.  

 
 

 

 



Future works:   32    

  

  

   

  

   

  

  

   Determination of the rheological parameters (elasticity, viscosity, density) 

of viscoelastic media 𝜇 = 𝐺′ + 𝑗𝐺′′.  
 

Inverse Sturm-Liouville Problem:   

Ţ

Fig.13. a) Viscoelestic layer over 

an elastic substrate    

Fig.13. b)  Viscoelastic liquid loading 

the waveguide surface 

Dispersion curves 

𝜇 = 𝜇𝐵
0 − 𝑗𝜔𝜂   ;    𝜌 

𝜇 = 𝜇𝐵
0 − 𝑗𝜔𝜂   ;    𝜌 

𝜇𝐵
0 ,  𝜂,  𝜌 



Potential applications of the Inverse 

Method    
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The results of the study can constitute the theoretical basis for 

application works in various branches of industries, namely:  

 

1) in on-line investigation of liquid polymers during the course of 

technological processes (e.g., during processing of liquid polymers, 

during the pressurized encapsulation)  

 

2) in on-line controlling of the viscoelastic properties of drilling fluids in 

petroleum and mining industries, during the oil and natural resources 

exploration  

 

3) in the investigation of the viscoelastic properties of liquid food products 

(e.g., oils, fats, juices etc.).  

 

4) in theory, design, and optimization of the ultrasonic sensors of the 

physical properties, chemo and biosensors, based on the use of surface 

Love waves  

 

5) in geophysics and seismology    

 


