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Monitoring and studying the pressure 

effect on liquid physical properties is 

very important in:

• Chemical, pharmaceutical and cosmetic industry

• Food processing and conservation

• Biodiesel production 

• Lubrication processes

• Oil-based drilling fluids exploitation

• Oceanography and Geology (petroleum cuts) 

• Astrophysics 

• Glass processing
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Conventional mechanical methods for 

the measurement of liquid  viscosity 

adapted for high-pressure conditions:

• Rolling ball

• Falling ball (Stokes) 

• Falling needle

• Falling cylinder

• Rotational viscometer (Couette - 1890) 

• Capillary tube viscometer (Poiseuille - 1846)
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Disadvantages of mechanical methods:

• Presence of moving parts

• Require special sophisticated equipment

• Measurements are tedious and time consuming

• Large dimensions

• Difficult to computerize

• Cannot operate in real-time

• Only laboratory methods
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Ultrasonic methods 

Bulk acoustic waves

• Standing waves (resonators)

• e.g. torsionally oscillating piezoelectric quartz rod

(1950) 

• Travelling waves (waveguides)

The acoustic energy is distributed in the entire volume 

of resonator or waveguide. The contact with an

investigated liquid takes place on its surface. 
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Shear horizontal surface acoustic 

waves (SH-SAW)

• Love waves

• Bleustein-Gulyaev (B-G) waves

(1989) 

The energy of SH-SAW is concentrated in the vicinity of

the waveguide surface. Thus the SH-SAW velocity and

attenuation strongly depend on the boundary conditions 

on the waveguide surface. In consequence, the 

sensitivity of the viscosity sensors using SH-SAW can 

be several orders larger than the sensitivity of the 

sensors employing bulk shear acoustic waves. 

7



Love Waves

• Fig.1. Love wave amplitude    

 in function of depth
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Fig.2. Excitation of the  

Love wave, (3) PZT plate 

transducer, (1) Cu surface

layer, (2) steel substrate



Bleustein-Gulyaev (B-G) Waves

• Fig.3. Excitation of the B-G wave in a piezoceramic PZT 
waveguide (2) covered on the surface by a very thin 
metallic (Ag) layer (1) by means of the PZT plate 
transducer (3). PZT ceramics (both in the transducer and 
waveguide) is polarized along the axis.
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Application of SH-SAW for determining 

the rheological parameters of liquids at 

atmospheric pressure
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ratio            of the shear stress T  to the shear strain S ,       is the liquid density 

where ,                ,               ,        is the phase velocity of the non-perturbed 

SH surface wave on the free surface, and        is the angular frequency of the 
SH surface wave.
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Application of SH-SAW for measuring 

the viscosity of liquids at high pressure
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where:        and        is a real and imaginary part of the 
mechanical shear impedance of a liquid.
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Advantages of the SH-SAW method for 

measuring the viscosity of liquids at 

high pressure:

• Absence of moving parts

• Operation in real time

• Short measuring time

• High sensitivity

• Low power consumption 

• Small dimensions, simple and robust construction of the sensor

• Possibility of computerization

• Output signal is electrical

• No leakage problems

• No heating caused by shear
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Ultrasonic set up for measuring the 

viscosity of liquids under high pressure
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Ultrasonic set up for measuring the 

viscosity of liquids under high pressure

Fig.5. Love wave waveguide, Cu surface layer on  a 

steel substrate (on the right), connected to the high-

pressure lead through (on the left).
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Fig.6. Oscillogram of the SH surface wave impulses 

reverberating in the waveguide
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continuous exponential curve

represents the Barus formula

η(p) = η0 exp(αp)

Fig.7. Variations in viscosity of castor oil, as a function of 

hydrostatic pressure, measured by the Love wave method
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continuous exponential curve

represents the Barus formula

η(p) = η0 exp(αp)

Fig.8. Variations in viscosity of triolein, as a function of 

hydrostatic pressure, measured by the Bleustein-Gulyaev (B-G) 

wave method

Triolein = ester = 

glicerol + 3 oleic acids

The main constituent of: 

vegetable oils,

animal fats



Measurement of sound speed in liquids at 

high pressure

Sciyo Fig.9
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LiNbO3 (Y36 cut) transducers, f = 5 MHzFig.9



Phase velocity of longitudinal acoustic waves in 

triolein in function of hydrostatic pressure

Sciyo Fig.11
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1 – low-pressure phase

2 – phase transition

3 – high-pressure phase

4 – decompression

Between points marked by a

and b two phases coexisted 

in triolein.
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Isothermal compressibility of triolein as a 

function of hydrostatic pressure
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1 – low-pressure phase

2 – phase transition

3 – high-pressure phase
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Possibility of measurement of various 

physical (thermodynamic) parameters

• Isothermal compressibility

• Isentropic compressibility

• Isobaric heat capacity

• Isobaric thermal expansion coefficient 

• Internal pressure

• Free volume 

• Non-linearity parameter B/A
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Ultrasonic set up for measuring the 

viscosity of liquids under high pressure

at various temperatures
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Fig.13. Viscosity of triolein versus hydrostatic pressure 

along various isotherms
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Measurement of the physical properties 

of liquids during phase transition

Investigation of phase transition is very important in 

lubricants exploitation and in food processing and

conservation.

During phase transition a step change in liquid viscosity,

phase velocity and compressibility occurs.

Investigation of phase transitions was impossible with

conventional mechanical methods.By contrast, the

presented novel SH-SAW methods enable the

measurement of the rheological parameters of liquids

during phase transitions. 
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Kinetics of phase transitions in triolein at 

various temperatures (T=10, 20, 30, and 

40 °C) 
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The piston was

locked in a fixed

position

Fig.14
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Conclusions

• New methods for measuring the viscosity of liquids at high 
pressure have been established.

• The SH-SAW viscosity sensor is electrically responsive. 
Owing to this fact, modern methods of the digital signal 
acquisition and processing can be efficiently used.

• The measuring set up operates in real time and can be 
employed for measuring liquid viscosity under high 
pressure in the course of the technological processes.

• We measured the viscosity of liquids and speed of sound 
not only in the exponential range but also during the 
phase transition, at high pressure phase and during the 
decompression. This is a novelty.   
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