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Abstract
In this study, we analyze theoretically and numerically the properties of Love surface waves propagating in lossy multilayered

composite waveguides, loaded on the upper surface with a Newtonian liquid. The propagation of Love surface waves was

formulated in terms of a direct Sturm–Liouville problem. An analytical form of the complex dispersion equation of the Love

surface wave was derived using the Thomson–Haskell transfer matrix method. By separating the complex dispersion

equation into its real and imaginary parts, we obtained a set of two nonlinear algebraic equations, which were subsequently

solved numerically. The effect of various physical parameters of the lossy viscoelastic waveguide on the velocity and

attenuation of the Love surface wave was then analyzed numerically. It was found that because of the presence of losses in

the analyzed waveguide, Love surface waves displayed a number of new original phenomena, such as resonant-like maxima

in attenuation as a function of thicknesses h1 of the first viscoelastic surface layer and thickness h2 of the second elastic

surface layer. These phenomena are completely absent in lossless waveguides.
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1. Introduction

The propagation of elastic waves in layered structures was
the subject of numerous theoretical and experimental in-
vestigations in recent decades (Achenbach, 1973; Auld,
1990; Royer and Dieulesaint, 2000; Rose, 2014). The most
important types of elastic waves are surface Rayleigh and
Love waves, Lamb plate waves, and Stoneley interface
waves. The above types of elastic waves are ubiquitous in
seismology, geophysics, nondestructive testing (NDT), and
sensors technology.

Surface waves of the Love type have a number of unique
features, which differentiate them from other types of
surface elastic waves. First, Love surface waves have only
one shear horizontal (SH) component of vibrations. As
a result, the amplitude of Love surface waves is only slightly
affected by loading with a viscous liquid. Second, the
energy of Love waves attains high densities in guiding
surface layers. This property is crucial in successful de-
velopment of Love wave sensors working generally in
a liquid environment (Kiełczyński, 1997; Kiełczyński and
Szalewski, 2011; Kiełczyński et al., 2012, 2014, 2015). Last
but not least, the analytical formulas describing propagation

of Love surface waves are relatively compact, which enable
drawing clear physical conclusions.

In a vast majority of articles analyzing properties of Love
surface waves in geophysics, sensors, and layered com-
posite materials, Love wave waveguides were considered to
be entirely lossless (Kakar and Kakar, 2012; Kundu et al.,
2014; Singh, 2010). However, real Love wave waveguides
have to be necessarily lossy because of the inherent vis-
coelastic properties of the constituent materials, and an extra
loading with a viscous liquid, in the case of sensors.

The main purpose of this work is to overcome the
limitations of existing theories by extending the analysis to
the case of Love wave propagation in lossy multilayered
composite waveguides. Needless to say, introduction of
losses will complicate significantly the corresponding
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analysis. However, more importantly, it will reveal new
phenomena, which are completely absent in lossless
waveguides. As a matter of fact, the propagation of elastic
surface waves in the lossy media has been only addressed in
a limited number of works (Chattopadhyay et al., 2010; Guo
and Sun, 2008; Kiełczyński, 2018; Sharma and Kumar,
2017; Yuan et al., 2019).

In this study, we analyze theoretically the properties of
SH surface waves of the Love type, propagating in lossy,
composite waveguides consisting of two surface layers
deposited on an elastic substrate. First surface layer no. 1
(looking from the top) is a lossy, viscoelastic layer, de-
scribed by the Kelvin–Voigt rheological model. Second
lossless elastic surface layer no. 2 is sandwiched between
the first lossy surface layer and the lossless semi-infinite
elastic substrate (material no. 3). The first lossy surface
layer of the waveguide is additionally loaded with a lossy
Newtonian viscous liquid (material no. 0) of an infinite
thickness.

In Section 3, we established an analytical form of the
complex dispersion equation for the Love wave using the
Thomson–Haskell transfer matrix method.

The phase velocity and attenuation of Love surface
waves propagating in the analyzed lossy multilayer
waveguide, loaded with a Newtonian liquid, were calcu-
lated numerically (by solving the dispersion equation) in
Section 4 as a function of various physical parameters of the
composite layered viscoelastic waveguide, such as thick-
ness h1 and viscosity η44 of the first viscoelastic surface
layer, viscosity η of the loading Newtonian liquid, and
thickness h2 of the second lossless elastic surface layer.

In Section 5, discussion of the obtained results is pre-
sented, and in Section 6, conclusions and possible potential
applications are established.

This study may be of interest for engineers and scientists
working in NDT of composite materials used in aerospace
technology, rheology of materials, seismology, and the
design and optimization of biosensors and chemosensors.

2. Mathematical formulation of the
problem: direct Sturm–Liouville
problem

The propagation of Love surface waves in multilayered
composite waveguides, with known material and geometric
parameters, can be formulated in terms of the direct Sturm–

Liouville problem (Kiełczyński, 2018). Solutions to this
direct Sturm–Liouville problem form a set of discrete
eigenvalue–eigenvector pairs. An eigenvalue corresponds
to the complex wave vector k , comprising the phase ve-
locity vp and attenuation α of the Love wave. The associated
eigenvector describes spatial distribution of the mechanical
displacement of the Love surface wave as a function of
depth x2, that is the direction normal to the guiding surface
x2 ¼ 0 (see Figure 1).

Because the layered composite waveguide is lossy, the
wave number k of the Love wave is necessarily a complex
quantity

k ¼ k0 þ jα (1)

where j ¼ ffiffiffiffiffiffiffi�1
p

is the imaginary unit.
The real part ðk0Þ of the complex wave number k de-

termines the phase velocity of the Love wave vp ¼ ω=k0,
where ω is the angular frequency of the wave. On the other
hand, the imaginary part α of the wave number k is the
coefficient of attenuation of the Love wave.

2.1. Geometry and material parameters of the lossy
composite Love wave waveguide

The multilayered viscoelastic composite waveguide struc-
ture analyzed in this study is shown in Figure 1. The
composite waveguide consists of first viscoelastic (Kelvin–
Voigt type) surface layer no. 1 ð0 < x2 ≤ h1Þ deposited on
second lossless elastic surface layer no. 2 ðh1 < x2 ≤
h2 þ h1Þ, which in turn is rigidly bonded to an infinite
elastic substrate (material no. 3), occupying the lower half-
space ðx2 > h2 þ h1Þ. In addition, the top surface of surface
layer no. 1 ðx2 ¼ 0Þ is loaded with an infinite viscous

Figure 1. Cross section of the analyzed lossy multilayered

composite Love wave waveguide. Love surface waves propagate

along the x1 axis. Shear horizontal mechanical displacement u3 of
the Love wave is directed along the x3 axis. Newtonian liquid

(material no. 0) and first surface layer no. 1 are lossy. Second

surface layer no. 2 and the substrate (material no. 3) are lossless.
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(Newtonian) liquid (material no. 0), occupying the lower
half-space ðx2 < 0Þ. The Newtonian liquid is characterized
by its viscosity η and density ρ0 as well as by the complex

shear modulus of elasticity cð0Þ44 ¼ �jωη. It is assumed that
SH surface waves of the Love type propagate in direction x1
in the analyzed waveguide structure.

Viscoelastic properties of first lossy surface layer
no. 1, made, for example of a poly(methyl methacrylate)
(PMMA) material, are modeled by the Kelvin–Voigt
(K–V) rheological model (Gutierrez-Lemini, 2014). Ac-
cording to the Kelvin–Voigt rheological model, the com-
plex shear modulus of elasticity cð1Þ44 of the PMMAmaterial
constituting first surface layer no. 1 is given by the fol-
lowing formula

cð1Þ44 ¼ c1 � jωη44 (2)

where c1 is the shear storage modulus of elasticity, η44 is the
viscosity of the material, and ω is the angular frequency
ðω ¼ 2π � f Þ.

Second surface layer no. 2 is a lossless elastic material
(such as gold (Au)), with a real shear modulus of elasticity
cð2Þ44 . The elastic substrate (such as ST-cut quartz supporting
pure SH bulk waves) is a semi-infinite elastic material (no.
3) with a real shear modulus of elasticity equal to cð3Þ44 . The
axis x2 is directed into the bulk of the substrate. In addition,
all material parameters of the composite waveguide are
homogeneous along x1 and x3 axes and change only along
the x2 axis.

3. Complex dispersion equation of the
Love surface wave

3.1. Governing equations of motion

3.1.1. Semi-infinitive layer of Newtonian liquid ðx2 < 0Þ. The
mechanical displacement uð0Þ3 of the bulk SH wave (gen-
erated by the Love surface wave) is governed by the fol-
lowing Navier–Stokes partial differential equation

∂2uð0Þ3

∂t2
¼
��jωη

ρ1

� 
∂2uð0Þ3

∂x21
þ ∂2uð0Þ3

∂x22

!
(3)

where ρ1 is the liquid density, η is the viscosity, and ω is the
angular frequency of the Love wave.

3.1.2. Lossy viscoelastic surface layer ðh1 > x2 > 0Þ. The me-
chanical displacement uð1Þ3 of the Love wave in the vis-
coelastic surface layer fulfills the following equation of
motion

1

v21

∂2uð1Þ3

∂t2
¼ ∂2uð1Þ3

∂x21
þ ∂2uð1Þ3

∂x22
(4)

where v1 ¼ ððc0 � jωη44Þ=ρ1Þ1=2 ¼ v01ð1� ðjωη44=c0ÞÞ1=2
is the complex bulk SH wave velocity in the first visco-
elastic surface layer, c0 is the storage modulus, ρ1 is the
density of the viscoelastic surface layer, and η44 is the
viscosity.

3.1.3. Lossless elastic subsurface layer ðh1 > x2 > h1 þ h2Þ. The
mechanical displacement uð2Þ3 of the Love wave in the elastic
subsurface layer is governed by the following equation of
motion

1

v22

∂2uð2Þ3

∂t2
¼ ∂2uð2Þ3

∂x21
þ ∂2uð2Þ3

∂x22
(5)

where v2 ¼ ðcð2Þ44 =ρ2Þ
1=2

is the bulk SH wave velocity in the
lossless subsurface layer, cð2Þ44 is the storage modulus of
elasticity, and ρ2 is the density of the lossless elastic sub-
surface layer.

3.1.4. Semi-infinitive elastic substrate ðx2 > h1 þ h2Þ. The
mechanical displacement uð3Þ3 of the Love wave in the
elastic substrate satisfies the following partial differential
equation (equation of motion)

1

v23

∂2uð3Þ3

∂t2
¼ ∂2uð3Þ3

∂x21
þ ∂2uð3Þ3

∂x22
(6)

where v3 ¼ ðcð3Þ44 =ρ3Þ
1=2

is the velocity of the bulk SH wave
in the elastic substrate, cð3Þ44 is the storage modulus of
elasticity, and ρ3 is the density in the elastic substrate.

3.2. Thomson–Haskell transfer matrix method

The complex dispersion equation of Love surface waves
propagating in the lossy waveguide presented in Figure 1
has been derived in this article using the Thomson–Haskell
transfer matrix method (Haskell, 1953; Ke et al., 2011;
Thomson, 1950).

The key element in the Thomson–Haskell method is to
relate mechanical displacement and shear stress of the Love
wave on the upper surface of each layer with mechanical
displacement and shear stress on the lower surface of the
considered layer. Below we show briefly the derivation of
this relationship.

A general form of the time-harmonic solution for the
equations of motion (equations (3)–(6)) in the subsequent
layers corresponding to a time-harmonic Love surface wave
is sought in the following form

u3ðx1; x2; tÞ ¼ V ðx2Þ � exp½ jðkx1 � ωtÞ� (7)

where V ðx2Þ is the transverse distribution of the mechanical
displacement u3 of the Love surface wave as a function of
depth x2.
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The shear stress associated with the mechanical dis-
placement u3 of the Love wave is given by the following
formula

τ23ðx1; x2; tÞ ¼ Tðx2Þ � exp½ jðkx1 � ωtÞ� (8)

where Tðx2Þ ¼ c44ðx2Þð∂V ðx2Þ=∂x2Þ. Here, c44ðx2Þ is the
shear modulus of elasticity of the material in the constituent
parts of the waveguide.

The equation of motion (see equations (3)–(6)) for the
subsequent layer is an ordinary differential equation of
second order. Considering two new dependent variables (V
and T ), each of the second order differential equations (3)–
(6) can be represented as a system of two differential
equations of the first order, namely

d

dx

�
V
T

�
¼ ½A�

�
V
T

�
¼

2
64 0

1

c44ðxÞ
β2c44ðxÞ � ω2ρðxÞ 0

3
75�VT

�

(9)

Solving this matrix differential equation (9), for example
for the PMMA surface layer, we arrive at the following
formula (equation (10)) linking mechanical displacement
and shear stress on the upper surface of the PMMA layer for
ðx2 ¼ 0Þ with mechanical displacement and shear stress on
the lower surface of this layer for ðx2 ¼ h1Þ. Details of this
derivation are given in Kiełczyński et at., (2016)

�
V

T

�����
x¼h1

¼ cosðq1 �h1Þ

×

2
664

1
1

cð1Þ44 �q1
tanðq1 �h1Þ

�cð1Þ44 �q1 � tanðq1 �h1Þ 1

3
775

×

�
V

T

�����
x¼0

(10)

where q1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 � k2

p
is the transverse wave number of the

Love wave in the first PMMA surface layer, k1 ¼ ðω=v1Þ is
the wave number of bulk SH waves in the PMMA surface

layer, v1 ¼ ðcð2Þ44 =ρ1Þ
1=2

is the phase velocity of bulk SH
waves in the PMMA surface layer, and k ¼ k0 þ jα is the
complex wave number of the Love wave.

For a two-layer ðN ¼ 2Þ system (PMMA surface layer
no. 1 deposited on second surface Au layer no. 2, see
Figure 1), the dependence between the mechanical dis-
placement and the shear stress on the lower (bottom) surface
of the second elastic surface layer no. 2 (Au) x2 ¼ ðh1 þ h2Þ

and on the upper ðx2 ¼ 0Þ surface of the first viscoelastic
PMMA surface layer no. 1 is given by a resulting transfer
matrix [A], being a product of two matrices (10) written for
the surface layer no. 1 and layer no. 2, respectively, that is

½A� ¼ M ×

2
664

1
1

cð2Þ44 � q2
tanðq2 � h2Þ

�cð2Þ44 � q2 � tanðq2 � h2Þ 1

3
775

×

2
664

1
1

cð1Þ44 � q1
tanðq1 � h1Þ

�cð1Þ44 � q1 � tanðq1 � h1Þ 1

3
775
(11)

where M ¼ cosðq2 � h2Þcosðq1 � h1Þ, q2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 � k2

p
, k22 ¼

ðω2 =v22Þ, and v2 ¼ ðcð2Þ44 =ρ2Þ
1=2

.

Having performed the corresponding multiplications,
equation (11) leads to the following expression for the
overall transfer matrix ½A�

½A� ¼
�
A11 A12

A21 A22

�
¼ M ×

�
B11 B12

B21 B22

�
(12)

where B11 ¼ 1� tanðq1 � h1Þ � tanðq2 � h2Þ � fðcð1Þ44 � q1=cð2Þ44 �
q2Þg, B12¼ð1=cð1Þ44 �q1Þtanðq1 �h1Þþð1=cð2Þ44 �q2Þtanðq2 �h2Þ,
B21 ¼�cð2Þ44 � q2 � tanðq2 � h2Þ � cð1Þ44 � q1 � tanðq1 � h1Þ, B22 ¼
1� tanðq1 � h1Þ � tanðq2 � h2Þ � fðcð2Þ44 � q2=cð1Þ44 � q1Þg

The unknown components of the mechanical displace-
ment and the corresponding shear stress of the Love wave at
the interface x2 ¼ 0 and x2 ¼ h1 þ h2 will be further de-
noted by V0; T0 and VD; TD, respectively

�
VD

TD

�
¼
�
A11 A12

A21 A22

��
V0

T0

�
(13)

3.3. Shear stresses on top of the first surface layer no
1 and bottom of the second surface layer no 2

The top surface of first PMMA layer no. 1 ðx2 ¼ 0Þ is
loaded with a semi-infinite Newtonian liquid. The de-
pendence of the mechanical displacement on the depth
V ðx2Þ in the Newtonian liquid is given by V ðx2Þ ¼
V0 � expðλ1 � x2Þ. Thus, the shear stress of the bulk SH wave
in a Newtonian liquid at the interface with PMMA surface
layer no. 1 is given by

T0 ¼ cð0Þ44

∂V
∂x2

����
x2¼0

¼ cð0Þ44 � λ1 � V0 (14)
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where cð0Þ44 ¼ �jωη is a complex shear modulus of elas-
ticity of the Newtonian liquid, λ1 ¼ ðk2 � k20Þ1=2, and k20 ¼
jωðρl=ηÞ. The parameters λ1 and k0 correspond, respec-
tively, to the transverse wave number of the Love surface
wave in the Newtonian liquid and the complex wave
number of bulk SH waves in the Newtonian liquid.

Bottom of the elastic surface layer no. 2 (Au) ðx2 ¼
h1 þ h2Þ is rigidly bonded to the semi-infinite elastic
substrate (material no. 3). The dependence of the me-
chanical displacement on the depth V ðx2Þ in an elastic
substrate is given by V ðx2Þ ¼ VD � expð�b � x2Þ. Therefore,
the shear stress in the elastic substrate at the interface with
elastic surface layer no. 2 (Au) is given by

TD ¼ cð3Þ44

∂V
∂x2

����
x2¼ðh1þh2Þ

¼ �cð3Þ44 � b � VD (15)

where b¼ðk2� k23Þ1=2, k3 ¼ðω=v3Þ, and v3 ¼ ðcð3Þ44 =ρ3Þ
1=2

.
The parameters b and k3 correspond, respectively, to the
transverse wave number of the Love surface wave in
the substrate and the wave number of bulk SH waves in
the substrate.

Substituting values of the shear stresses T0 and TD given
by equations (14) and (15) into (13) leads to

�
VD

�cð3Þ44 � b � VD

�����
x¼ðh1þh2Þ

¼
�
A11 A12

A21 A22

��
V0

cð0Þ44 � λ1 � V0

�����
x¼0

(16)

In fact, equation (16) contains only two unknowns,
namely V0 and VD. By a simple rearrangement of the terms,
equation (16) can be written as

2
4 1 �

�
A11 þ A12 � cð0Þ44 � λ1

	
cð3Þ44 � b

�
A21 þ A22 � cð0Þ44 � λ1

	
3
5� V0

VD

�
¼
�
0
0

�
(17)

3.4. Determination of the complex dispersion
equation

A necessary condition for the existence of a nonzero so-
lution of equation (17) requires zeroing of the determinant
of the 2 × 2 matrix in equation (17). This condition leads to
the following complex dispersion equation for Love waves

�
A21 þ A22 � cð0Þ44 � λ1

	
þ
�
cð3Þ44 � b

	�
A11 þ A12 � cð0Þ44 � λ1

	
¼ 0

(18)

Substituting into equation (18), the elements of the
matrix ½A� given by equation (12), we arrive finally at the
following complex dispersion equation for the Love surface

waves propagating in the lossy composite waveguide, as
shown in Figure 1

�tanðq1 � h1Þ � tanðq2 � h2Þ
8<
:
�
λ1 � cð0Þ44

	
�
cð3Þ44 � b

	
�
cð2Þ44 � q2

	
�
cð1Þ44 � q1

	

þ
�
cð1Þ44 � q1

	
�
cð2Þ44 � q2

	
9=
;þ tanðq1 � h1Þ

8<
:
�
λ1 � cð0Þ44

	
�
cð1Þ44 � q1

	

�
�
cð1Þ44 � q1

	
�
cð3Þ44 � b

	
9=
;þ tanðq2 � h2Þ

8<
:
�
λ1 � cð0Þ44

	
�
cð2Þ44 � q2

	

�
�
cð2Þ44 � q2

	
�
cð3Þ44 � b

	
9=
;þ

0
@
�
λ1 � cð0Þ44

	
�
cð3Þ44 � b

	 þ 1

1
A ¼ 0

(19)

Despite being complex, the dispersion equation (19)
contains only two real-valued unknowns, that is the real k0
and imaginary α parts of the complex wave number k of the
Love wave (see equation (1)).

The complex dispersion equation, equation (19), can be
subsequently split into its real ReF and imaginary ImF
parts, which we will equate simultaneously to zero, namely

ReF
�
cð1Þ44 ; ρ1; c

ð2Þ
44 ; ρ2; c

ð3Þ
44 ; ρ3; η; ρl; η44; h1; h2;ω; k0;α

	
¼ 0

(20)

ImF
�
cð1Þ44 ; ρ1; c

ð2Þ
44 ; ρ2; c

ð3Þ
44 ; ρ3; η; ρl; η44; h1; h2;ω; k0;α

	
¼ 0

(21)

Equations (20) and (21) constitute a system of two
nonlinear, transcendental algebraic equations for two real
unknowns k0 and α. The parameters included explicitly in

equations (20) and (21) are the following cð1Þ44 ; ρ1; c
ð2Þ
44 ; ρ2;

cð3Þ44 ; ρ3; η; ρ0; η44; h1; h2; andω. The nonlinear system of
two algebraic equations (20) and (21) has been solved
numerically, using the adequate procedures provided by
software package Scilab. If the values of k0 and α are al-
ready determined, the phase velocity of the Love surface
wave can be readily calculated from the following ele-
mentary formula vp ¼ ω=k0.

4. Results of numerical calculations

Numerical calculations were performed for Love surface
waves propagating in the composite lossy waveguide
structure (Figure 1), consisting of material and geometrical
parameters of the multilayered composite waveguide, used
in numerical calculations, which are given explicitly in
Table 1.
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4.1. Phase velocity and attenuation of Love waves

The influence of the Newtonian liquid on the phase velocity
of Love surface waves is in general small. Therefore, the
phase velocity vp is plotted in Figure 2 only for one viscosity
of the Newtonian liquid, namely for η ¼ 10 Pa s.

A small wrinkle in Figure 2, that occurs approximately at
the same frequency ∼2:8MHz, as the inflection point in the
attenuation of the Love wave (see Figure 3), can be con-
sidered as a secondary effect caused by high viscosity η ¼
10 Pa s of the loading viscoelastic liquid. In lossless
waveguides, this small irregularity in the phase velocity
vanishes.

In contrast to the phase velocity vp, shown in Figure 2,
the attenuation α of Love surface waves (see Figure 3)

depends strongly on viscosity η of the loading Newtonian
liquid.

At a frequency of ∼2.8 MHz, the attenuation α of Love
surface waves exhibits clear inflection point (see Figure 3).
This phenomenon occurs approximately for the same value
of the product fh1 ≈ 280MHz μm and fh2 ≈ 280MHz μm,
as that at which we observe a resonant-like attenuation
of the Love surface wave, as a function of thickness h1 of
the first PMMA surface layer (see Figure 5) and as
a function of thickness h2 of the second (Au) surface layer
(see Figure 7).

If the thickness of the first PMMA surface layer equals
zero h1 ¼ 0, Love surface waves are still guided by

Figure 2. Phase velocity vp of Love surface waves, as a function of
frequency f , for the viscosity of the loading Newtonian liquid

η ¼ 10 Pa s. The viscosity of the first PMMA surface layer

η44 ¼ 0:37 Pa s. Thickness of the first PMMA surface layer

h1 ¼ 100 μm. Thickness of the second elastic surface layer (Au)

h2 ¼ 100 μm. PMMA: poly(methyl methacrylate).

Figure 3. Attenuation α of Love surface waves, as a function of

frequency f , for different values of viscosity η of the Newtonian

liquid η ¼ 1; 5; and 10 Pa s. Viscosity of the first PMMA surface

layer η44 ¼ 0:37 Pa s. Thickness of the first PMMA surface layer

h1 ¼ 100 μm. Thickness of the second elastic (Au) surface layer

h2 ¼ 100 μm. PMMA: poly(methyl methacrylate).

Table 1. Material and geometrical parameters of the lossy multilayered Love wave waveguide (Figure 1) used in numerical calculations.

Material

Thickness

ðμmÞ
Density

ðkg=m3Þ
Storage shear

modulus ðGPaÞ
Shear horizontal wave

velocity ðm=sÞ
Viscosity

ðPa sÞ
Newtonian liquid Semi-infinite ρ0 ¼ 1000 0 NA η ¼ 0–200

PMMA surface layer h1 ¼ 0–2000 ρ1 ¼ 1180 c1 ¼ 1:43 v01 ¼ 1100 η44 ¼ 0–200

Gold subsurface layer h2 ¼ 0–2000 ρ2 ¼ 19300 cð2Þ44 ¼ 27:52 v2 ¼ 1194 0

ST-cut quartz substrate Semi-infinite ρ3 ¼ 2650 cð3Þ44 ¼ 67:85 v3 ¼ 5060 0

Phase velocity vp and attenuation α of the Love surface wave were determined as a function of the following parameters: (1) thickness h1 of the first PMMA

surface layer, (2) thickness h2 of the second (Au) surface layer, and (3) wave frequency f . PMMA: poly(methyl methacrylate).
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a remaining second (Au) surface layer of thickness h2 ¼
100 μm. However, if thickness h1 ¼ 0, the phase velocity
vp of Love surface waves equals approximately vp ≈
3750 m=s, at a frequency 1 MHz (see Figure 4), and is
a decreasing function of thickness h1 of the first PMMA
surface layer, as expected.

By contrast to the phase velocity vp, the attenuation α of
Love surface waves (Figure 5) displays resonant-like
maxima, as a function of thickness h1 of the first PMMA
surface layer. The resonant-like maxima are located ap-
proximately at the vicinity of the steepest descent of the
phase velocity, as a function of thickness h1 of the first
PMMA surface layer (see Figure 4), for the product
fh1 ≈ 280MHz μm (see Figure 5). PMMA: poly(methyl
methacrylate).

The viscosity η of the loading Newtonian liquid has no
influence on the phase velocity of Love surface waves, as
a function of thickness h2 of the second (Au) surface layer
(Figure 6). However, the attenuation of Love waves is
a pronounced function of thickness h2 of the second buried
elastic surface layer of and the viscosity η of the loading
Newtonian liquid (Figure 7). In addition, the attenuation of
Love surface waves displays resonant-like maxima, as
a function of thickness h2, with the amplitude proportional
to

ffiffiffi
η

p
.

Figure 6. Phase velocity vp of Love surface waves, as a function of
thickness h2 of the second elastic (Au) surface layer, for viscosity

η ¼ 10 Pa s of the loading Newtonian liquid. The viscosity of the

first PMMA surface layer η44 ¼ 0:37 Pa s. Thickness of the first

PMMA surface layer h1 ¼ 100 μm. Frequency f ¼ 1MHz. PMMA:

poly(methyl methacrylate).

Figure 5. Attenuation α of Love surface waves, as a function of

thickness h1 of the first PMMA surface layer, for different values of

viscosity η ¼ 1; 5; and 10 Pa s of the loading Newtonian liquid.

Viscosity of the first PMMA surface layer η44 ¼ 0:37 Pa s. Thick-
ness of the second elastic (Au) surface layer h2 ¼ 100 μm. Fre-
quency f ¼ 1MHz. PMMA: poly(methyl methacrylate).

Figure 4. Phase velocity vp of Love surface waves, as a function of
thickness h1 of the first PMMA surface layer, for different values of

viscosity η ¼ 1; 5; and 10 Pa s of the Newtonian liquid. The vis-

cosity of the first PMMA surface layer η44 ¼ 0:37 Pa s. Thickness of
the second elastic (Au) surface layer h2 ¼ 100 μm. Frequency of

the Love wave f ¼ 1MHz. PMMA: poly(methyl methacrylate).
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The phase velocity of the Love wave as a function of
thickness h2 of the second elastic surface layer, for vis-
cosities η ¼ 1 and 5 Pa s of the loading Newtonian liquid,
was almost identical to that corresponding to viscosity
η ¼ 10 Pa s, thus, it is not plotted in Figure 6.

5. Discussion

First, the new phenomenon, which we observed in lossy
Love wave waveguides, analyzed in this paper, can be
discerned from Figure 2 by tracing the phase velocity vp of
Love surface waves, as a function of frequency f . Initially,
the phase velocity vp drops quickly from vp ¼ 5060m=s at
f ≈ 0MHz to vp ≈ 1100m=s at f ¼ 5MHz. Then, the phase
velocity vp attains a plateau and starts to increase for fre-
quencies higher than ∼7 MHz. The viscosity of the
Newtonian liquids loading the waveguide in Figure 2 was
η ¼ 10 Pa s. Interestingly, an analogous phenomenon was
not observed for lower viscosities ðη ¼ 1–5 Pa sÞ of the
loading Newtonian liquid. The results presented in Figure 2
suggest that high viscosity η of the loading Newtonian
liquid has in general a stiffening effect on overall properties
of Love wave waveguides.

Second, a new phenomenon was observed in Figure 3 for
the attenuation αðf Þ of Love surface waves, as a func-
tion of frequency f . At the beginning, the attenuation in-
creases with frequency, then reaches an inflection point at

f ¼ 2:8MHz, for η ¼ 10 Pa s, and finally the attenuation
grows almost linearly with the frequency. It is interesting to
note that the inflection point in Figure 3 occurs for the
product fh1 ≈ 280MHz μm.

The attenuation α of Love surface waves, as a function of
thickness of PMMA surface layer h1 and thickness of gold
layer h2, grows with viscosity η of the loading Newtonian
liquid approximately as

ffiffiffi
η

p
(see Figures 3, 5, and 7).

Next, the new important phenomenon discovered by the
authors in this study is a resonant-like character of the
attenuation α of Love surface waves as a function of
thickness h1 of the first lossy PMMA surface layer (see
Figure 5) and thickness h2 of the second lossless (Au) elastic
surface layer (Figure 7). Interestingly enough, the second
lossless gold surface layer (thickness h2) can “see” losses of
the loading Newtonian liquid (viscosity η), despite the fact
that these two materials are physically separated by an
intermediate PMMA surface layer no. 1. It is interesting to
note that the resonant maxima in attenuation shown in
Figures 5 and 7 occur for the same value of the product
ðfrequency � thicknessÞ, that is for fh1 ≈ 280MHz μm in
Figure 5 and fh2 ≈ 280MHz μm in Figure 7.

It is noteworthy that the problem of propagation of Love
surface waves in multilayered lossy composite waveguides
loaded with a viscoelastic Newtonian liquid can be formu-
lated in terms of a direct Sturm–Liouville problem (Arfken
and Weber, 2005). This suggests that Love surface waves
propagating in lossy multilayered composite waveguides
may have some analogies in electromagnetism and quantum
mechanics (Malischewsky, 2009), where the formalism of
the direct Sturm–Liouville problem is widely used.

6. Conclusions

Taking into account the results of the theoretical analysis
and numerical calculations performed in this article, we can
draw the following conclusions:

1. High viscosity η of the loading Newtonian liquid has
in general a stiffening effect on Love wave composite
waveguides. As a result, phase velocity vp of Love
waves increases as a function of frequencies for high
viscosities ðη ¼ 10 Pa sÞ of the loading Newtonian
liquid, see Figure 2

2. Attenuation α of Love waves exhibits resonant-like
maxima, as a function of thickness h1 of the first
PMMA surface layer and a function of thickness h2
of the second surface layer (Au), with an amplitude
proportional to

ffiffiffi
η

p
, see Figure 5

3. Attenuation α of Love waves exhibits resonant-like
maxima, as a function of thickness h2 of the second
surface layer (Au), with an amplitude proportional toffiffiffi
η

p
, see Figure 7

4. Resonant-like maxima in attenuation α of Love
waves, as a function of thickness h2 of the second

Figure 7. Attenuation α of Love surface waves, as a function of

thickness h2 of the second elastic (Au) surface layer, for different

values of viscosity η ¼ 1; 5; and 10 Pa s of the loading Newtonian

liquid. The viscosity of the first PMMA surface layer η44 ¼ 0:37 Pa s.
Thickness of the first PMMA surface layer h1 ¼ 100μm. Frequency
f ¼ 1MHz. PMMA: poly(methyl methacrylate).
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lossless elastic (Au) surface layer, occur, despite the
fact that the second gold surface layer is not in direct
contact with a lossy Newtonian liquid (see Figure 7).

The new wave phenomena enumerated in points 1–4
above occur only in Love wave waveguides with losses.
They are entirely absent in lossless waveguides.

The results of theoretical analysis and numerical cal-
culations, presented in this article, can be useful in NDT of
layered lossy composite materials, mechanics of materials,
as well as in designing and optimization of biosensors and
chemosensors that use surface waves of the Love type.
Similarly, the results of this work can find applications in
geophysics and seismology as well as in mining and pe-
troleum engineering.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with re-
spect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support
for the research, authorship, and/or publication of this article: The
project was funded by the National Science Centre (Poland),
granted on the basis of Decision No. 2016/21/B/ST8/02437.

ORCID iD
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