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- Surface acoustic wave sensors employing Love 

and Bleustein-Gulyaev surface waves

- Mathematical modeling and numerical methods

- Computerized instrumentation

- High pressure characterization of liquids using Love and BG surface waves



Outline of the Presentation 

• 1) Discovery of Love waves

• 2) Unique properties of Love waves

• 3) Analogies between Love waves and 

a) Electromagnetism

b) Quantum mechanics

• 4) Mathematical modeling of Love wave propagation: 

Direct Sturm – Liouville Problem 

• 5) New analytical formulas for the mass sensitivity of Love wave  

sensors

• 6) Unexpected counter intuitive phenomena in Love wave waveguides 

• 7) New mathematical tools and Perspectives for  Love wave sensors
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How Love waves look like?

Deadly Love waves are generated during earthquakes. 
Benign Love waves are employed in: 1) sensors and 2) non-destructive testing (NDT).
Love waves spans the frequency range from 0.001 Hz (seismic) to ~ 10 GHz (sensors).

Fig.1.

In the direction of the axis x2

(depth) Love waves are standing 
waves 

In the direction of the axis x1

Love waves are traveling waves 

Love waves have only one SH 
component of the mechanical 
displacement u3 - along the x3 axis

𝑢3(𝑥1, 𝑥2, 𝑡) = 𝑓(𝑥2) ∙ 𝑒𝑥𝑝 𝑗 𝛽𝑥1 − 𝜔𝑡



Historical perspective for Love surface waves 
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Augustus, Edward, 

Hough Love - 1911

Fig.2.

1885 – Rayleigh waves (surface waves) 

1911 – Love waves (SH surface waves) 

1917 – Lamb waves (plate waves) 

1924 – Stoneley waves (solid-solid interface waves)

1927 – Sezawa waves (plate waves)  

1947 – Scholte waves (liquid-solid interface waves) 

1968 – Bleustein-Gulyaev waves , (SH surface waves in 
piezoelectrics)    



Why Love waves are special? 
Unique properties of Love waves

Love surface waves have many unique features that differentiate them from other 
types of surface waves, such as: Rayleigh, Lamb and/or Stoneley waves. 
For example, Love surface waves: 

1.   have only one shear horizontal (SH) component of vibration 
(mechanical displacement) 

2. have mathematical model with a moderate complexity 
3. have exact analogues in electromagnetism and integrated optics

(TM modes in planar dielectric waveguides) 
4. have a direct analogy in quantum mechanics (quantum particles in potential

wells)
5. Love wave can be regarded as a representative of electromagnetic waves among 

mechanical waves
6.   The relative simplicity of the mathematical model of the Love wave 

allows us to achieve a number of useful analytical formulas, e.g., the formula

for the mass sensitivity 𝑆𝜎
𝑣𝑝 of the Love wave sensor



Love wave as a mechanical (elastic) Shear
Horizontal (SH) surface wave

Love wave is the simplest (SH surface) mechanical wave.
Love wave has only one component of the mechanical displacement 𝑢3:  

Strain:                 Antiplane stress:   

Mathematical description of the Rayleigh surface wave 
is significantly more difficult than that of the Love wave.
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Elementary cube

𝑥1 = x; 𝑥2 = 𝑦;   𝑥3 = 𝑧

Fig.3.

𝜎zx = 𝜎13; 𝜎z𝑦= 𝜎23
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Love surface waves have an exact analogue in 
electromagnetism (TM guided waves in dielectrics)
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S.S. Attwood, Journal of Applied Physics, 

1951: Microwave engineering  

A.H.E. Love, Some Problems in Geodynamics, 

1911: Seismology

Fig.1.
Fig.4. Fig.5.

Acoustics preceded electromagnetism by 40 years !!! 𝑢𝑧(𝑥, 𝑦, 𝑡) = 𝑓(𝑦) ∙ 𝑒𝑥𝑝 𝑗 𝛽𝑥 − 𝜔𝑡



TM modes, ELECTROMAGNETISM Love waves, THEORY OF  ELASTICITY

1. Dielectric layer (slab) – TM modes 1. Elastic surface layer

2. Boundary conditions 2. Boundary conditions

3. Solutions:                                                                 3. Solutions: 

Maxwell equations:                                     Equations of motion:  

𝑑2𝐻𝑧

𝑑𝑦2 + 𝜇𝜀𝜔2 ∙ 𝐻𝑧 = 𝛽2 ∙ 𝐻𝑧
𝑑2𝑢𝑧

𝑑𝑦2 +
𝜌

𝑐44
𝜔2 ∙ 𝑢𝑧 = 𝛽2 ∙ 𝑢𝑧

𝐻𝑧(𝑥, 𝑦, 𝑡) = 𝐴 ∙ cos(𝑞𝑦𝑦) ∙ 𝑒𝑥𝑝 𝑗 𝛽𝑥𝑥 − 𝜔𝑡 𝑢𝑧(𝑥, 𝑦, 𝑡) = 𝐵 ∙ cos(𝑞𝑦𝑦) ∙ 𝑒𝑥𝑝 𝑗 𝛽𝑥𝑥 − 𝜔𝑡

a) 
𝑑𝐻𝑧

𝑑𝑦
= 0  at 𝑥 = 0

where: 𝑞𝑦 = 𝛽2 − 𝜇𝜀𝜔2

b) continuity of  
𝑑𝐻𝑧

𝑑𝑦
and 𝐻𝑧 at 𝑥 = ℎ

where: 𝑞𝑦 = 𝛽2 −
𝜌

𝑐44
𝜔2

a) 
𝑑𝑢𝑧

𝑑𝑦
= 0  at 𝑥 = 0

b) continuity of  
𝑑𝑢𝑧

𝑑𝑦
and 𝑢𝑧 at 𝑥 = ℎ

(3)

(4)

(5)

(7)

(6) (10)

(8)

(9)

Eqs. 3, 7 = Eigenequations for eigenvalues and eigenfunctions

b) continuity of  
𝑑𝑢𝑧

𝑑𝑦
and 𝑢𝑧 at 𝑥 = ℎ

To find distributions of 𝑢𝑧(𝑦) and 𝐻𝑧(𝑦) it is necessary to solve equations of motion



Analogy of Love waves in Integrated Optics: 
(Optical Planar Waveguides)

Theory of this type of planar optical waveguides was developed in 1960s   

Fig.6.

The fundamental TM mode in the optical planar waveguide (see Fig.6) can be regarded as an optical analogue of the 
Love wave

Mathematical methods of modern Optics are very advanced and can be transferred to Acoustics 

TM mode



Analogy of Love waves with Quantum Mechanics 

Equation of motion (Newton laws) 

𝑢𝑧 𝑦 − Mechanical displacement

𝑢𝑧 𝑦 2 − Energy density

𝛽1
2,  𝛽2

2 − Eigenvalues (Propagation constants) 

Direct Sturm- Liouville Problem 

Schrödinger equation (1926)  

Ψ 𝑦 − Wave function

Ψ 𝑦 2 − Probability density

𝐸1, 𝐸2 − Energy levels

Direct Sturm- Liouville Problem 

Fig.8.

Fig.7.

Mathematical methods developed in Quantum Mechanics are very sophisticated, original and rich.

Mathematical methods used in Quantum Mechanics may be one day transferred into the theory of Love waves 



PARTICLE IN QUANTUM WELL 

1. Quantum well 1.       1. Elastic surface layer

2. Boundary conditions:                                               2. Boundary conditions:                           

3. Solutions:                                                                 3. Solutions: 

Schrödinger equation:                                     Equations of motion:  

−
ℏ2

2𝑚

𝑑2Ψ

𝑑𝑦2 + 𝑉 ∙ Ψ = 𝐸 ∙ Ψ
𝑑2𝑢𝑧

𝑑𝑦2 +
𝜌

𝑐44
𝜔2 ∙ 𝑢𝑧 = 𝛽2 ∙ 𝑢𝑧

Ψ(𝑥, 𝑡) = 𝐴 ∙ cos(𝑞𝑦𝑦) ∙ 𝑒𝑥𝑝 𝑗 −𝜔𝑡 𝑢𝑧(𝑥, 𝑦, 𝑡) = 𝐵 ∙ cos(𝑞𝑦𝑦) ∙ 𝑒𝑥𝑝 𝑗 𝛽𝑥𝑥 − 𝜔𝑡

where: 𝑞𝑦 = 𝐸 − 𝑉

b) continuity of  
𝑑Ψ

𝑑𝑦
and Ψ at 𝑥 = ±ℎ

where: 𝑞𝑦 = 𝛽2 − 𝜌𝑠44𝜔
2

a) 
𝑑𝑢𝑧

𝑑𝑦
= 0  at 𝑥 = 0

b) continuity of  
𝑑𝑢𝑧

𝑑𝑦
and 𝑢𝑧 at 𝑥 = ℎ

The same differential equations with identical boundary conditions have certainly the same solutions 

Equations describing many phenomena  in different domains of physics have exactly the same form  

(11)

(13)

(12)

(14)

(15)

(16)

LOVE WAVES

𝑠44 = Τ1 𝑐44



Direct Sturm-Liouville Problem 
Common Mathematical Model
of 3 different physical phenomena

• Sturm-Liouville Problem (17-18) for eigenvalues and eigenvectors: 

• 𝛽2 = eigenvalue – determines the phase velocity of the Love wave (𝛽 = Τ𝜔 𝑣𝑃 - wave number)

• 𝑓(𝑥2) = eigenvector – determines the distribution of the mechanical displacement with depth

• It is amazing that: Common mathematical model describes:  

• a) Love surface waves propagation

• b) motion of quantum particles in a potential well (Schrödinger equation) 

• c) planar optical waveguides
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1

𝑐44

𝑑

𝑑𝑥2
𝑐44(𝑥2)

𝑑

𝑑𝑥2
+

1

𝑐44
𝜌𝜔2 𝑓(𝑥2) = 𝛽2𝑓(𝑥2)

)𝑑𝑓(0

𝑑𝑥2
= 0

𝑓(∞) = 0 (18)

(17)

Mathematics is certainly the Queen of Sciences 

eigenvalueeigenvector

𝑢3(𝑥1, 𝑥2, 𝑡) = 𝑓(𝑥2) ∙ 𝑒𝑥𝑝 𝑗 𝛽𝑥1 − 𝜔𝑡

𝐿𝑓 𝑥2 = 𝛽2𝑓(𝑥2)

Operator L

ฬ𝛽𝑗
2, 𝑓𝑗 𝑥2

𝑗=0,1, …



Physical Implementation of Love Wave Sensors
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Fig.9

a) Typical dimensions  - 1 x 5 x 20 mm
b) Circuit configuration  - resonator 

or delay line
c) Frequency range  - 50 - 500 MHz
d) Wavelength range  - 10 - 100 μm

Love waves are essentially mechanical waves, therefore the change of the mechanical conditions on the surface 
of the waveguide (e.g. in the sensing layer) will affect the velocity and attenuation of the Love wave

1. Love waves as Shear Horizontal waves can operate in liquid environment
2. High concentraction of Energy in the vicinity of the waveguide surface

high sensitivity of the sensor
3.   Simple construction of Love wave waveguides
4.    Love wave sensors have the highest mass sensitivity of all sensors that 

use other types of waves: e.g., Rayleigh, Lamb, SH plate, flexural plate 
waves etc.

Why Love waves are so successful in sensors, biosensors and chemosensors?



First Publications on Love Wave Sensors
First attemps to employ Love waves into sensors were carried out at

the Polish Academy of Sciences, exactly 70 years after the 
discovery of A.E.H. Love (1911) 

1) P. Kiełczyński and R. Płowiec, Polish Patent (1981)

P. Kiełczyński, W. Pajewski, European Mechanics  Colloquium 

(1987), (Nottingham, Great Britain) 

3) P. Kiełczyński, W. Pajewski, IEEE Ultrasonic Symposium,

(1988), (Chicago, USA) 

4) P. Kiełczyński, R. Płowiec,
Journal of the Acoustical Society of America, JASA - (1989):     →

In these papers we have developed a theoretical (perturbation) model of 
the Love wave sensors along with its experimental verification

This model is the basis for the operation of a) biosensors, b) 
chemosensors and c) sensors of physical quantities

The first similar papers on Love wave sensors appeared in the USA        3 
years later:

5) G. Kovacs et al., IEEE Ultrasonic Symposium (1992)

6) A. Venema et al., Applied Physics Letters, (1992)

7) M.J. Velekoop et al., IEEE Ultrasonic Symposium (1994)

8) E. Gizeli et al., IEEE Trans on UFFC, (1992) 
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Recent discoveries of the author in the field of Love waves
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1. Analytical formulas for the mass sensitivity 𝑆𝜎
𝑣𝑝

of Love wave sensors

2. Proportionality between the mass sensitivity 𝑆𝜎
𝑣𝑝

and the relative slope of the 

dispersion curves 𝑣𝑝 ℎ and 𝑣𝑝 𝑓

3. Love waves in lossy media 

4. Counter-intuitive and unexpected phenomena in Love wave waveguides

a) minimum of phase velocity as a function of liquid viscosity

b) maximum  of attenuation as a function of liquid viscosity

5. New mathematical tools applied in analysis of Love wave sensors. 

Inverse Problems

All these new discoveries were achieved using a full wave theory not a perturbation theory
Here, we can see the power of Mathematical Modeling  



Mass sensitivity 𝑆𝜎
𝑣𝑝

of Love wave sensors 
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Physical model of the sensor.

𝑆𝜎
𝑣𝑝 = 

1

𝑣𝑝
∙
𝑑𝑣𝑝

𝑑𝜎

𝑡𝑎𝑛 𝑞1 ∙ ℎ1 ∙ 𝑐44
1
∙ 𝑞1

2
+ 𝜎 ∙ 𝜔2 ∙ 𝑐44

2
∙ 𝑏 + 𝑐44

1
∙ 𝑞1 ∙ 𝜎 ∙ 𝜔2 − 𝑐44

2
∙ 𝑏 = 𝐹 𝑣𝑝, 𝜎, ℎ1, 𝑓 = 0

Dispersion equation: 

𝑑𝑣𝑝
𝑑𝜎

= −
Τ𝜕𝐹 𝜕𝜎

Τ𝜕𝐹 𝜕𝑣𝑝

Mass sensitivity:  

From the very sophisticated

Implicit Function Theorem

we get: 

Here, we can see the power

of Mathematics

Full-wave theory

Fig.10.

+ Boundary conditions

(20)

(19)

Full-wave mathematical model of the Love wave sensor.
P. Kiełczyński, Sensors & Actuators A, 2021, (to be published). 

Equations of motion

𝜎 is the surface mass density of an infinitesimally
thin layer deposited on the waveguide surface



New original analytical formulas for the mass 

sensitivity 𝑆𝜎
𝑣𝑝

of Love wave sensors 

Mass sensitivity 𝑆𝜎
𝑣𝑝 versus wave frequency Mass sensitivity 𝑆𝜎

𝑣𝑝 versus surface layer thicknees

Fig.11. Fig.12.

𝑆𝜎
𝑣𝑝 =

𝜔2 1
𝑘

𝑐44
1 𝑞1 + 𝑐44

2 𝑏 ∙ 𝑡𝑎𝑛 𝑞1ℎ1

ℎ1
𝑐𝑜𝑠2 𝑞1ℎ1

𝜕𝑞1
𝜕𝑘

𝑐44
1 𝑞1

2
+ 𝑐44

2 𝑏 𝜎𝜔2 + 𝑡𝑎𝑛 𝑞1ℎ1 2𝑞1 𝑐44
1

2 𝜕𝑞1
𝜕𝑘

+ 𝑐44
2 𝜕𝑏
𝜕𝑘

𝜎𝜔2 + 𝑐44
1 𝜕𝑞1

𝜕𝑘
∙ 𝜎𝜔2 − 𝑐44

2 𝑏 − 𝑐44
2 𝜕𝑏
𝜕𝑘

𝑐44
1 𝑞1

Huge advantage of analytical formulas: possibility of optimal selection of the thickess of the surface layer and material parameters of the waveguide

(21)
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Phase velocity 𝑣𝑝 ℎ1 versus surface layer thicknees.                                                    Relative slope
1

𝑣𝑝
∙

𝑑𝑣𝑝

𝑑ℎ1
versus surface layer thicknees

Fig.13. Fig.14.

𝑆𝜎
𝑣𝑝

=
Τ𝜕𝐹 𝜕𝜎

Τ𝜕𝐹 𝜕ℎ1
∙
1

𝑣𝑝
∙

𝑑𝑣𝑝
𝑑ℎ1

Perturbative formula for 𝑆𝜎
𝑣𝑝: Mc Hale et al., Journal of Applied Physics, 2002 

(23)(22)

Discovery of the proportionality between the mass 

sensitivity 𝑆𝜎
𝑣𝑝

and phase velocity gradients

The highest sensitivity 𝑆𝜎
𝑣𝑝

occurs at the points where
the dispersion curves

are the steepest



Plot of the phase velocity versus frequency 𝑣𝑝 = 𝑣𝑝 𝑓 Plot of the relative slope versus frequency  𝑆𝜎
𝑣𝑝 = 𝑆𝜎

𝑣𝑝 𝑓

Exact (closed-form) analytical formula

 𝑆𝜎
𝑣𝑝
=

𝜔3

2𝜋
∙

𝑡𝑎𝑛 (𝑞1ℎ1)∙ 𝑐44
(2)

𝑏 +𝑐44
(1)

𝑞1

𝑞1ℎ1
𝑐𝑜𝑠 2(𝑞1ℎ1)

  𝑐44
(1)

𝑞1 
2
+𝜎𝜔2𝑐44

(2)
𝑏 +𝑡𝑎𝑛 (𝑞1ℎ1)∙𝜎𝜔2𝑐44

(2)
𝑏+𝜎𝜔2𝑐44

(1)
𝑞1

∙
1

𝑣𝑝
∙  

𝑑𝑣𝑝

𝑑𝑓
  

Fig.15. Fig.16.

𝑆𝜎
𝑣𝑝

=
Τ𝜕𝐹 𝜕𝜎

Τ𝜕𝐹 𝜕𝑓
∙
1

𝑣𝑝

𝑑𝑣𝑝
𝑑𝑓

(25)(24)

Exact analytical formulas for the mass sensitivity 

𝑆𝜎
𝑣𝑝

in terms of the phase velocity gradients

The highest sensitivity 𝑆𝜎
𝑣𝑝

occurs at the points where
the dispersion curves

are the steepest



New unexpected counter intuitive phenomena displayed by
Love waves in waveguides loaded with a lossy liquid

Propagation constant and transverse wave numbers of the Love wave are complex  

Love waves in lossy waveguides reveal a number of new amazing propertiers.  

Let the surface of the waveguide is covered with a lossy liquid (e.g., Newtonian one)  

Love wave waveguide is covered with a lossy liquid  

Full-wave theory

Fig.17.

sin 𝑞𝐷 ∙ 𝜇1
2 ∙ 𝑞2 + 𝜇2 ∙ 𝑏 ∙ 𝜆1 ∙ 𝑗𝜔𝜂 − cos 𝑞𝐷 ∙ 𝜇1 ∙ 𝜇2 ∙ 𝑏 ∙ 𝑞 − 𝜇1 ∙ 𝑞 ∙ 𝜆1 ∙ 𝑗𝜔𝜂 =

= 0

Quantities in red 𝑞, 𝑏 𝑎𝑛𝑑 𝜆1 in Eq.26 are complex:   𝛽 = 𝛽0 + 𝑗𝛼

(P. Kiełczyński et al., „Effect of a viscous liquid loading on Love wave

propagation”,  International Journal of Solids and Structures, 2012)

Equations of motion

Complex Dispersion Equation (26)



Minimum of phase velocity and maximum  of attenuation 
as a function of liquid viscosity (waveguide Fig.17)

Fig. 19.  Attenuation versus liquid viscosityFig. 18. Phase velocity as a function of liquid viscosity  

Using a full-wave theory we received the following unexpected results:

Applying a full-wave theory, we got unexpected results that are not provided by the perturbation theory (straight red lines)



Sudden qualitative changes in phase velocity and 
attenuation of the Love wave (continuation)

Cross-section of the analyzed 2 surface layer Love wave waveguide.Fig.20.

−𝑡𝑎𝑛 𝑞1 ∙ ℎ1 ∙ 𝑡𝑎𝑛 𝑞2 ∙ ℎ2 ∙
𝜆1·𝑐44

0

𝑐44
3
·𝑏

𝑐44
2
∙𝑞2

𝑐44
1
∙𝑞1

+
𝑐44

1
∙𝑞1

𝑐44
2
∙𝑞2

+

+ 𝑡𝑎𝑛 𝑞1 ∙ ℎ1 ·
𝜆1·𝑐44

(0)

𝑐44
(1)

∙𝑞1
−

𝑐44
(1)

∙𝑞1

𝑐44
(3)

·𝑏
+

+ 𝑡𝑎𝑛 𝑞2 ∙ ℎ2 ∙
𝜆1·𝑐44

0

𝑐44
2
∙𝑞2

−
𝑐44

2
∙𝑞2

𝑐44
3
·𝑏

+
𝜆1·𝑐44

(0)

𝑐44
(3)

·𝑏
+ 1 = 0

(27)

Novel dispersion equation for 2 surface layer 

waveguides loaded with a Newtonian liquid:

Full-wave theory



Another unexpected result: sudden qualitative changes 
in phase velocity and attenuation of the Love wave  
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Phase velocity versus frequencyFig.21.

𝜂

𝜂 = 0 𝑃𝑎𝑠

Viscosity of the loading viscoelastic liquid 
increases gradually from η0=0 Pas.
For a certain value of the viscosity η0~ ~ 11 
Pas, we observe an unexpected and dramatic 
change in the phase velocity and attenuation 
of the Love wave.

Elastic waveguide has 2 different surface layers
(Fig.21)
1st elastic surface layer = PMMA 
2nd elastic surface layer = Gold  
Substrate           = Quartz 

𝜂 = 𝜂0~11 𝑃𝑎𝑠

No such effect is observed in a single layer waveguide



New mathematical tools applied by the author 
in analysis of Love wave sensors 
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Direct Sturm-Liouville Problem  

The solution of the Inverse Problem is equivalent to the solution of the Optimization Problem: 

min    Φ(analyte, waveguide, experiment, ω; X)     ; Φ 𝑋 ≥ 0 ;   Φ is an Objective Function

seeking for X that minimizes the Objective Function Φ ;  X material parameters

Inverse Sturm-Liouville Problem  

Fig.22.

Model
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1) Jakoby et al., IEEE, Trans on UFFC, 2010 

cantilevers + magnetic field = (quite a complicated) 

1) P. Kiełczyński et al., „Inverse procedure for 

simultaneous evaluation of viscosity and density of 

Newtonian liquids from dispersion curves of Love waves”, 

Journal of Applied Physics, 116, (2014) 044902

Sensor = only a single Love wave waveguide !!! 

No lasers, no magnetic fields
Fig.23. Fig.24.

Application of Inverse Problems to simultaneous determination of 

density and viscosity 𝜌, 𝜂 of liquids using Love surface waves

2) Herrmann et al., , Applied Physics Letters, 1999

I have achieved excellent results:



Future Direction of Research and Perspectives 
for Love Wave Sensors

New Analytical Methods:

1) Inverse problems (higher accuracy), 

Minimization of the Objective Function Φ:

min  Φ (analyte, waveguides, experiment, ω)

2)   Optimization methods in Banach space (Functional Analysis)

New materials and waveguide structures:

1) Multilayer (N>10) LSW waveguides (wideband characteristics)

2) Higher operating frequencies 2-5 GHz (higher sensitivity)

3) New fast materials for the substrate: Diamond, (BN) boron nitride, 

(AlN) aluminum nitride
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