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   Abstract— Simultaneous determination of the rheological 

parameters of viscoelastic surface layers is very important in 

many applications such as: sensors, geophysics, seismology, and 

in the NDT of materials. Love wave energy is concentrated near 

the waveguide surface, so that Love waves are especially suited 

to study the material properties of surface layers. In this work, 

the Direct Sturm-Liouville Problem for the Love wave 

propagation in a layered viscoelastic waveguide have been 

presented and solved. Next, the Inverse Problem was created 

and solved as an Optimization Problem. The adequately 

formulated objective function that depends on the elastic and 

viscoelastic parameters of a waveguide of the Love wave and the 

experimental data was used. The solution of the Inverse 

Problem allows to determine unknown values of the viscosity 

and shear elasticity of a viscoelastic medium from 

measurements of the dispersion curves of Love waves.  
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I.  INTRODUCTION  

      The objective of this work is to establish an Inverse 

Method for the simultaneous determination of the viscosity 

and shear elasticity of viscoelastic materials. Determination 

of the storage and loss modulus of viscoelastic media is very 

important in monitoring the technological parameters of e.g., 

viscoelastic polymers during the course of technological 

processes in the chemical industry. Classical mechanical 

methods for determining the rheological parameters of 

viscoelastic media are cumbersome and difficult to 

computerize. Thus, they cannot be applied on-line to control 

technological processes. To overcome the drawbacks of the 

mechanical methods, new ultrasonic methods that employ 

ultrasonic volume shear waves [1-3], and surface acoustic 

waves [4-9] were applied to investigate the rheological 

parameters of materials. Till present, rheological parameters 

of materials (viscosity and density) were measured 

simultaneously using ultrasonic two-element sensors [10,11] 

or special complex sensors that can be only used in laboratory 

[12,13]. Evaluation storage and loss modulus of viscoelastic 

surface sensing layers in bio and chemosensors is also of 

paramount importance in design and exploitation of these 

sensors [14]. The measured analyte influences directly the 

viscoelastic parameters of surface sensing layer. The 

determination of changes in the viscoelastic parameters of a 

sensing layer is a crucial problem in the theory, design and 

optimization of these sensors. This problem is also very 

important in geophysics [15], seismology [16], and in the 

NDT of materials.  

      Love waves are ideally suited to investigate the physical 

parameters of surface layers. The Kelvin-Voigt model of a 

viscoelastic layer was assumed (𝜇 = 𝜇𝐵
0 − 𝑗𝜔𝜂). In this 

study, to evaluate the viscoelastic parameters of an 

investigated surface layer, the following 3 steps were 

performed: 1) formulation and solution of the Direct Problem 

that describes propagation of Love waves in the layered 

structure: viscoelastic layer deposited on an elastic substrate, 

2) experiment (numerical), and 3) formulation and solution 

of the Inverse Problem for Love waves propagating in this 

layered structure. This allows to determine the unknown 

viscoelastic parameters of the surface layers. This procedure 

employs the experimental dispersion curves of phase velocity 

and attenuation of Love waves (from 0.8 to 5 MHz) that 

propagate in the considered layered structure. The Inverse 

Problem was formulated and solved as a minimization 

problem. The objective function that depends on material 

parameters of the substrate, the frequency, experimental data 

(phase velocity and attenuation) and unknown viscoelastic 

parameters (𝜇𝐵
0 , 𝜂) of the layer , has been constructed.  

      The results obtained are novel and original and can be of 

high relevance in industrial applications, for monitoring 

parameters of viscoelastic polymers.  

II. DIRECT STURM-LIOUVILLE PROBLEM  

A. Dispersion relation  
 

 

Fig.1. Structure of the surface Love wave layered waveguide. 
Viscoelastic layer is deposited over an elastic substrate.  
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The direct Sturm-Liouville problem relies on the 
determination of the dispersion curves and the mechanical 
displacement of the surface wave for given values of viscosity 
and elastic parameters of the surface layer and substrate, and 
frequency. Love wave propagates in a layered viscoelastic 
waveguide (a viscoelastic isotropic layer is rigidly attached to 
an isotropic and elastic substrate), see Fig.1.  

      Employing the continuity conditions of the mechanical 
displacement 𝑢3 and shear stress 𝜏23, at the interfaces: 1) 
𝑥2 = 0 and 2) 𝑥2 = ℎ, we obtain the following analytical 
formula for the complex dispersion equation of the Love 
wave [17]:  

          sin(𝑞𝐵 ∙ ℎ) ∙ 𝜇𝐵 ∙ 𝑞𝐵 − cos(𝑞𝐵 ∙ ℎ) ∙ 𝜇𝑇 ∙ 𝑏 = 0        (1)  

The complex wave number in Eq.1 is equal 𝑘 = 𝑘0 + 𝑗𝛼, 

where: 𝑗 = (−1)1 2⁄ .  

The real part of the wave number 𝑘0 describes the Love 
wave phase velocity. The imaginary part of the wave number 
𝛼 denotes an attenuation of the Love wave. In the dispersion 
equation (Eq.1), the quantities 𝑞𝐵, 𝑏 and 𝜇𝐵 are complex:  
 

   𝑞𝐵 = √(𝐾1
2 1

(1+𝑡𝑎𝑛2𝛿)
− 𝑘0

2 + 𝛼2) + 𝑗 ∙ (𝐾1
2 𝑡𝑎𝑛𝛿

(1+𝑡𝑎𝑛2𝛿)
 − 2 ∙ 𝑘0 ∙ 𝛼)   (2)  

 

            𝑏 = √(𝑘0
2 − 𝛼2 − 𝑘2

2) + 𝑗 ∙ 2 ∙ 𝑘0 ∙ 𝛼                   (3)  

 

                               𝜇𝐵 = 𝜇𝐵
0 − 𝑗𝜔𝜂                                  (4)  

where: 𝐾1 = 𝜔 𝑣1
0⁄   ;  𝑘2 =

𝜔

𝑣2
   ;   𝑘0 =

𝜔

𝑣𝑝
  ;  𝑡𝑎𝑛𝛿 = (

𝜔𝜂

𝜇𝐵
0 )  

      After separating the real and imaginary parts of Eq. 1, we 
arrive at the following system of nonlinear algebraic 
equations with unknowns: 𝑘0 and 𝛼.  

                 𝐶(𝜇𝐵
0 , 𝜌𝐵 ,  𝜇𝑇 , 𝜌𝑇 , 𝜂, ℎ, 𝜔; 𝑘0, 𝛼 ) = 0           (5)  

                 𝐷(𝜇𝐵
0 , 𝜌𝐵 ,  𝜇𝑇 , 𝜌𝑇 , 𝜂, ℎ, 𝜔; 𝑘0, 𝛼 ) = 0           (6)  

Here: 𝜇𝐵
0 , 𝜌𝐵 ,  𝜇𝑇 , 𝜌𝑇 , 𝜂, ℎ and angular frequency  𝜔 are 

parameters. The unknowns are: 𝑘0 and 𝛼.  

      The system of nonlinear equations (5,6) was solved 
employing the numerical procedures from a computer 
package Scilab. Subsequently, the dispersion curves of Love 
waves are evaluated.  

III.  RHEOLOGICAL MODEL  

 

      In this study, to characterize the rheological properties of 
viscoelastic surface layer, the Kelvin-Voigt model has been 
chosen. Employing the constitutive equations for this model 
we arrive at the following formula for the complex shear 
elastic modulus:  

                                 𝜇𝐵 = 𝜇𝐵
0 − 𝑗𝜔𝜂                                (7)     

where: 𝜇𝐵
0  is the elastic shear modulus, and 𝜂 is the viscosity 

of a viscoelastic medium. 

IV. INVERSE STURM-LIOUVILLE PROBLEM  

 
     The determination of the unknown rheological 

parameters from the measured dispersion curves of phase 
velocity and attenuation of Love waves propagating in a 
considered layered viscoelastic structure constitutes the 
Inverse Problem. In this work, the inverse problem was 
formulated and solved as an optimization problem with an 
appropriately defined objective function [18-20].  

     In order to solve the inverse problem the three steps 
were performed: 

1. formulation and solution of the direct problem 

2. carrying out numerical experiment  

3. formulation and solution of the inverse procedure  

    a. inverse problem is formulated as an optimization 
problem 

    b. determination of an objective function Q(𝜂, 𝜇𝐵
0 )  

    c. application of optimization procedures  

min Q(𝜂, 𝜇𝐵
0 ) ⟹ (𝜂𝑜𝑝𝑡 , (𝜇𝐵

0 )
𝑜𝑝𝑡

 )  

A. Objective function Q 

 

The objective function Q(𝜂, 𝜇𝐵
0 ) (see Eq.8) is used in the 

inverse problem that relies on simultaneous determination of 
two unknown operational variables, i.e., the viscosity 𝜂 and 

shear elasticity 𝜇𝐵
0 , of a viscoelastic medium. 

 Q(𝜂, 𝜇𝐵
0 ) = ∑ {(

𝑣𝑗
𝑚−𝑣𝑗

𝑐(𝜂,𝜇𝐵
0 )

𝑣𝑗
𝑚 )

2

+ (
∝𝑗

𝑚−∝𝑗
𝑐(𝜂,𝜇𝐵

0 )

∝𝑗
𝑚 )

2

}
𝑁𝑒
𝑗=1          (8)  

Here: 𝑁𝑒 is the number of experimental points, 𝑣𝑗
𝑐  and 𝛼𝑗

𝑐 

are the phase velocity and attenuation calculated from the 
direct problem that depend on both unknown values of the 
viscosity 𝜂 and shear elasticity 𝜇𝐵

0 , known “a priori”: material 
parameters of an elastic waveguide, and experimental angular 
frequency 𝜔𝑗. 𝑣𝑗

𝑚 and 𝛼𝑗
𝑚 are experimental quantities of the 

phase velocity and attenuation evaluated in Sect. V.  

      Using the optimization methods, minimum of the 
objective function Q(𝜂, 𝜇𝐵

0 ) was evaluated. It enabled the 
determination of the optimum values of the viscosity 𝜂 and 
shear elasticity 𝜇𝐵

0  simultaneously. These optimum values of 
the viscosity and shear elasticity constitute the solution of the 
Inverse Problem.  

To minimize the appropriate objective function, 
optimization procedures of the Nelder-Mead type from 
Scilab computer package were applied.  

V. NUMERICAL EXPERIMENT  

 

      In numerical experiments we evaluated the dispersion 
curves numerically. At the beginning, by solving the direct 
problem (Eqs.5 and 6), we calculated the phase  



TABLE I. Exact values of the phase velocity and attenuation at 

various frequencies for 𝜂𝑒𝑥𝑎𝑐𝑡 = 0.37 𝑃𝑎𝑠, (𝜇𝐵
0 )𝑒𝑥𝑎𝑐𝑡 = 1.43 ×

109  𝑁 𝑚2⁄ .  

 

Frequency 
[MHz] 

Phase velocity 
[m/s] 

Attenuation 

[Np/m] 

0.8 2005.64 4.82 

1.0 1495.46 6.12 

2.0 1171.42 19.70 

3.0 1130.75 42.86 

4.0 1117.42 75.33 

5.0 1111.40 117.07 

 

velocity and attenuation curves for the exact values of 
viscosity 𝜂𝑒𝑥𝑎𝑐𝑡 = 0.37 𝑃𝑎𝑠 and shear elasticity (𝜇𝐵

0 )𝑒𝑥𝑎𝑐𝑡 =
1.43 × 109  𝑁 𝑚2⁄ , see TABLE I. Applied in the numerical 
calculations material parameters of the waveguide structure 
(PMMA on Quartz) are given in Section VI. Next, we added 
random errors (i.e., 1%, 2%, 5%, 10%) to these obtained 
values of the phase velocity and attenuation (columns 2 and 
3 in TABLE I). Received in this way dispersion curves are 
regarded in the inverse procedure as simulated experimental 
curves. 

VI. NUMERICAL RESULTS  

Numerical calculations were performed for the following 
waveguide structure: PMMA – Poly(methyl methacrylate) 
surface layer attached to the quartz substrate (Fig.1). For 

PMMA: 𝜇𝐵
0 = 1.43 × 109   𝑁/𝑚2, and 𝜌𝐵 = 1.18 ×

103  𝑘𝑔 𝑚3⁄ . For quartz: 𝜇𝑇 = 5.4 × 1010   𝑁/𝑚2, and 𝜌𝑇 =
2.2 × 103  𝑘𝑔 𝑚3⁄ . The thickness ℎ of the surface layer is 0.4 
mm. The viscosity and shear elasticity of the viscoelastic 
layer were assumed as 𝜂𝑒𝑥𝑎𝑐𝑡 = 0.37 𝑃𝑎𝑠; (𝜇𝐵

0 )𝑒𝑥𝑎𝑐𝑡 = 1.43 ×
109  𝑁 𝑚2⁄  respecitively. Losses in the quartz substrate are 
omitted. The origin of losses is the viscosity of the 
viscoelastic surface layer.  

     We formulated and solved the inverse problem to evaluate 
simultaneously two unknown variables, i.e., the viscosity 𝜂, 
and shear elasticity 𝜇𝐵

0 . The Inverse Problem was solved for 
several values of added (to exact values of the phase velocity 
and attenuation) random errors in the range 1% to 10%, see 
TABLE I.  

The relative error RE1 for a series of 𝑁 measurements of 
the viscosity of a viscoelastic medium was defined as 
follows:  

𝑅𝐸1 = {(
|𝜂1

𝑐𝑎𝑙𝑐−𝜂𝑒𝑥𝑎𝑐𝑡|

|𝜂𝑒𝑥𝑎𝑐𝑡|
+

|𝜂2
𝑐𝑎𝑙𝑐−𝜂𝑒𝑥𝑎𝑐𝑡|

|𝜂𝑒𝑥𝑎𝑐𝑡|
+ ⋯ +

|𝜂𝑁𝑒
𝑐𝑎𝑙𝑐−𝜂𝑒𝑥𝑎𝑐𝑡|

|𝜂𝑒𝑥𝑎𝑐𝑡|
)} 𝑁⁄   (9) 

An analogous formula is valid also for the relative error RE2 
for a series of 𝑁 measurements of the shear modulus 𝜇𝐵

0  of a 
viscoelastic material.  

𝑅𝐸2 =

{(
|(𝜇𝐵

0 )
1

𝑐𝑎𝑙𝑐
−(𝜇𝐵

0 )
𝑒𝑥𝑎𝑐𝑡

|

|(𝜇𝐵
0 )

𝑒𝑥𝑎𝑐𝑡
|

+
|(𝜇𝐵

0 )
2

𝑐𝑎𝑙𝑐
−(𝜇𝐵

0 )
𝑒𝑥𝑎𝑐𝑡

|

|(𝜇𝐵
0 )

𝑒𝑥𝑎𝑐𝑡
|

+ ⋯ +
|(𝜇𝐵

0 )
𝑁𝑒

𝑐𝑎𝑙𝑐
−𝜂(𝜇𝐵

0 )
𝑒𝑥𝑎𝑐𝑡

|

|(𝜇𝐵
0 )

𝑒𝑥𝑎𝑐𝑡
|

)} 𝑁⁄   

                                                                                                        
(10) 

The results of numerical calculations of the Inverse Method 
for determining the unknown values of the rheological 
parameters of an investigated viscoelastic body are inserted 
in TABLE II.  

TABLE II. Relative error of the simultaneous evaluation of the 
viscosity and shear elasticity of the viscoelastic material determined 

from the inverse method employing objective function  Q(𝜂, 𝜇𝐵
0 ), 

for the maximum random errors equal 1%, 2%, 5%, and 10%. Each 

evaluation of (𝜂, 𝜇𝐵
0 ) results from the minimization of the objective 

function Q(𝜂, 𝜇𝐵
0 ), (Eq.4), for consecutive simulated dispersion 

curves of phase velocity and attenuation.  

 

Max 

Random 

error 

1% 2% 5% 10% 

Relative 

error (𝜂) 

Eq.9  

[%] 

0.40 0.81 2.21 6.63 

Root Mean 

Square 

Error(𝜂) 

[%] 

0.51 1.06 2.54 7.53 

Relative 

error (𝜇𝐵
0 ) 

Eq.10  

[%] 

0.27 0.47 1.21 3.72 

Root Mean 

Square 

Error (𝜇𝐵
0 ) 

[%] 

0.30 0.57 1.49 4.56 

 

VII. CONCLUSIONS  

 
      In this work, the Sturm-Liouville Direct Problem for the 
Love wave propagating in a layered waveguide with a 
viscoelastic layer has been formulated and solved. Then, the 
Inverse Problem for the ultrasonic Love wave propagating in 
the considered waveguide structure was also formulated and 
solved. The Inverse Problem was formulated as an 
Optimization Problem. To this end the appropriate objective 
function has been created. Minima of this objective function 
were evaluated by using the numerical optimization 
procedures (Nelder-Mead - nonlinear simplex). These 



minima specify simultaneously sought values of the viscosity 
𝜂 and shear elasticity 𝜇𝐵

0 . These values of the viscosity and 
shear elasticity form the solution of the Inverse Problem.  

    Objective function contains experimental data (𝑣𝑗
𝑚 and 

𝛼𝑗
𝑚) and values of phase velocity and attenuation of Love 

waves (𝑣𝑗
𝑐  and 𝛼𝑗

𝑐) evaluated by solving the direct problem. 

Calculated values (𝑣𝑗
𝑐  and 𝛼𝑗

𝑐) are functions of unknown 

viscosity η and shear elasticity 𝜇𝐵
0  of a viscoelastic material 

respectively. These values (𝑣𝑗
𝑐  and 𝛼𝑗

𝑐) depend also on the 

material parameters of the waveguide, that are known “a 
priori”. Objective function is a measure of the distance 
between experimental data and values obtained from the 
theoretical model. Minimization of this distance enables to 
determine simultaneously the unknown values of the 
viscosity and shear elasticity of the surface layer.  

      The solution of the Inverse Problem allows to determine 
simultaneously with good accuracy (of the order of 5%), both 
the shear elasticity and viscosity of a viscoelastic material. 
The accuracy of the obtained results can be ameliorated by 
averaging, i.e., by solving the Inverse Problem for a series of 
simulated experimental dispersion curves, and subsequently, 
by calculating the mean value of the obtained values of the 
viscosity 𝜂 and shear elasticity 𝜇𝐵

0 .  

Simultaneous evaluation of the viscosity and shear 
elasticity of viscoelastic materials is very important in the 
monitoring of technological processes in many branches of 
industry, e.g., chemical, food, plastics, and polymer 
industries.  

      The results obtained in this study are original and 
fundamental and can provide useful data for the design and 
fabrication of Love-wave based miniaturized liquid sensing 
devices, such as biosensors and chemosensors. Results of the 
study can also be applied in seismology and geophysics 
(investigations of earthquakes).  

      According to the best authors knowledge, formulation 
and solution of the Inverse Problem for the ultrasonic Love 
wave propagation in a layered viscoelastic waveguide and 
subsequently, simultaneous determination of the viscosity 𝜂 
and shear modulus 𝜇𝐵

0  of viscoelastic materials is a novelty.  
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