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Abstract— The aim of this study was to evaluate the inverse 

procedure to determine profiles (as a function of depth) of the 

mechanical properties of inhomogeneous FGM resulting from the 

application of various technological processes of surface 

treatment. First, the Direct Sturm-Liouville Problem for Love 

waves propagating in elastic graded materials with various 

profiles of the shear stiffness as a function of the distance from the 

surface, has been solved using the Finite Difference Method and 

Transfer Matrix Method (Haskell-Thompson method). Love wave 

dispersion curves were evaluated in the frequency range from 4 to 

23 MHz. The Inverse Problem was formulated as an Optimization 

Problem with appropriately constructed objective function that 

depended on the material properties of an elastic waveguide of the 

Love wave and the experimental data. To minimize the considered 

objective function, optimization procedures of the Nelder-Mead 

type from Scilab software package were employed.  
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I. INTRODUCTION  
 

    This paper presents the use of SH (Shear Horizontal) surface 

Love waves to determine the distributions of elastic parameters 

in inhomogeneous Functionally Graded Materials (FGM). The 

advantage of Love waves (applied to investigate the elastic 

properties of materials) in relation to the surface Rayleigh 

waves is that they have only one component of the mechanical 

displacement, in contrast to Rayleigh waves, which have two 

components [1]. Recently, ultrasonic method have been 

introduced to measure the physical properties of materials [2-

7]. Love wave energy (in contrast to the other types of waves, 

e.g., plate Lamb waves) is concentrated in the vicinity of the 

surface layer. The penetration depth of the SH surface Love 

waves depends on the frequency. Therefore, Love waves are 

particularly suitable for investigating the profiles of the 

mechanical properties in inhomogeneous Graded Materials.  

     Direct Sturm-Liouville Problem that describes the propaga- 

tion of Love waves in inhomogeneous graded materials has 

been formulated and solved numerically. The Inverse 

Procedure (Inverse Sturm-Liouville Problem) for determining 

the distribution of elastic properties versus depth in the 

inhomogeneous materials has been developed. Love wave 

dispersion curves in inhomogeneous graded materials were 

evaluated numerically (synthetic data). Using the evaluated 

dispersion curves of Love waves and a developed Inverse 

Procedure the distributions of elastic shear coefficient as a 

function of depth (distance from the surface of the material into 

the bulk) in a heterogeneous surface layer deposited on a 

homogeneous substrate have been evaluated. Formulation and 

solution of the Direct Problem and Inverse Problem for the 

Love wave propagating in the considered waveguide structures 

(see Fig. 1), in which the elastic properties vary continuously 

with depth, is a novelty. The results of this work can be applied 

in the investigation of Graded Materials applied in the aviation, 

aerospace and electronic industry, in fine mechanics, as well as 

in geophysics and seismology [8].  
 

II. DIRECT STURM-LIOUVILLE PROBLEM  
 

      Consider the propagation of Love waves in inhomogeneous 
elastic half-space in which the shear elastic coefficient is a 
continuous function of depth, see Fig.1.  

 

Fig.1. Variation of the elastic coefficient 𝑐44(𝑥), as a function of depth, 
in a nonhomogeneous elastic graded layer deposited on a homogeneous 
elastic substrate.  
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Such structures may represent elastic media occurring in the 
structures used, among others, in the electronics, aerospace and 
astronautic industry.  

Profiles of changes in the elastic coefficient 𝑐44(𝑥) in a 
nonhomogeneous elastic layer deposited on a homogeneous 
surface (see Fig.1) are represented by the following formulas:  
 

a) square root type profile 𝑛 = 1 2⁄  (profile no 1 in Fig.1)  
 

𝑐44(𝑥) 𝑐0 = 1 − (∆ 𝑐 𝑐0⁄ )⁄ [1 − (𝑥 𝐷⁄ )1/2][𝐻(𝑥 − 𝐷) − 𝐻(𝑥)]   (1a)  

 

b) linear profile 𝑛 = 1 (profile no 2 in Fig.1)  
 

𝑐44(𝑥) 𝑐0 = 1 − (∆ 𝑐 𝑐0⁄ )⁄ [1 − 𝑥 𝐷⁄ ][𝐻(𝑥 − 𝐷) − 𝐻(𝑥)] (1b)  
 

c) quadratic profile 𝑛 = 2 (profile no 3 in Fig.1)  
 

𝑐44(𝑥) 𝑐0 = 1 − (∆ 𝑐 𝑐0⁄ )⁄ [1 − (𝑥 𝐷⁄ )2][𝐻(𝑥 − 𝐷) − 𝐻(𝑥)] (1c)  
 

where: 𝐻(𝑥) is the Heaviside step function, 𝐷 is the depth of an 
inhomogeneous elastic layer.  

      Shear horizontal surface Love waves propagating in the 
considered heterogeneous elastic waveguide can be represented 
in the following form [9]:  

𝑢 = 𝑓(𝑥)exp𝑗(𝛽𝑧 −  𝜔𝑡), where: 𝑓(𝑥) is the amplitude of the 
Love wave, 𝛽 is a propagation constant of the wave, 

𝑗 = (−1)1 2⁄ , 𝑥 is the distance from the surface (depth), 𝑧 is the 
direction of wave propagation and 𝜔 is an angular frequency. 
Love wave mechanical movement is performed along the 𝑦 axis.  

      Mechanical field generated by Love waves propagating 
in an inhomogeneous elastic graded medium satisfies the 
following boundary conditions:  

a) on a free surface (𝑥 = 0), the transverse shear stress  

is equal to zero, hence 
𝑑𝑓(0)

𝑑𝑥
= 0  

b) at large distances (𝑥 → ∞) from the surface (𝑥 = 0) the 
mechanical displacement of the Love wave should tend to zero, 
i.e.,  𝑓(∞) = 0.  

The equation of motion for Love waves propagating in an 
inhomogeneous elastic medium (isotropic and in certain 
specified directions in media with regular and hexagonal 
symmetry) is represented by the following Differential Problem:  

 

𝑑

𝑑𝑥
(𝑐44(𝑥)

𝑑𝑓

𝑑𝑥
) +  𝜌𝜔2𝑓 = 𝑐44(𝑥)𝛽2𝑓                        (2)  

 

            
𝑑𝑓(0)

𝑑𝑥
= 0        ;        𝑓(∞) = 0                         (3)  

The Differential Problem (2 and 3) is named the Direct 
Sturm-Liouville Problem. The solution of the Direct Sturm-

Liouville Problem is a set of pairs (𝛽𝑗
2, 𝑓𝑗(𝑥)); where: 𝛽𝑗

2 is the 

𝑗 − 𝑡ℎ eigenvalue, 𝑗 = 1,2, … , 𝑛; 𝑛 is the number of modes of 
Love waves propagating in considered waveguide and 𝑓𝑗(𝑥) is 

the eigenvector corresponding to this eigenvalue. Eigenvalue 
corresponds to the phase velocity of the propagating surface 
Love wave, while the eigenvector describes the distribution of 
the mechanical displacement of an appropriate mode of the 
surface wave as a function of depth.  

      The constant density of the considered graded materials 𝜌 =
𝜌0 = 𝑐𝑜𝑛𝑠𝑡 was assumed throughout the paper.  

III. INVERSE STURM-LIOUVILLE PROBLEM  

      Inverse Problem considered in this work relies on the 
determination of unknown elastic parameters from the measured 
dispersion curves (phase velocity as a function of frequency) for 
Love waves that propagate in an inhomogeneous elastic 
waveguide. To solve the Inverse Problem one has to perform the 
following steps: 

- solve Direct Problem  

- determine experimentally dispersion curves  

- solve Inverse Problem.  

      In this paper, the Inverse Problem was formulated and solved 
as an optimization problem (Liu and Han, 2003) with properly 
defined objective function.  

A. Objective function  

      The objective function Π depends on the distribution of the 
elastic coefficient 𝑐44(𝑥) in nonhomogeneous investigated 
elastic structure, frequency, and experimental data (phase 
velocity of the surface Love wave). The nonhomogeneous 
elastic layer from Fig.1 was divided into 10 homogeneous 
layers. Values of the 𝑐44(𝑥) coefficient at 9 evenly spaced 
discrete points of the surface layer, i.e., 𝑐44(𝑥𝑗), 𝑗 = 1, 2, . . . , 9 

are treated as the unknowns to be determined from the Inverse 
Procedure. The objective function was introduced and defined 
as:  

Π(𝑡1, 𝑡2, … , 𝑡9) = ∑ {(
𝑣𝑗

𝑒𝑥𝑝
−𝑣𝑗

𝑐𝑎𝑙(𝑡1,𝑡2,…,𝑡9)

𝑣
𝑗
𝑒𝑥𝑝 )

2

}
𝑁𝑒
𝑗=1        (4)  

where: Ne - is the number of experimental frequencies, 𝑣𝑗
𝑒𝑥𝑝

 - is 

the measured phase velocity, 𝑣𝑗
𝑐𝑎𝑙  - is the calculated phase 

velocity, 𝑡1 = 𝑐44(𝑥1), 𝑡2 = 𝑐44(𝑥2), … ,𝑡9 = 𝑐44(𝑥9) - 
represent operational variables, that are determined from the 
solution of the Inverse Sturm-Liouville Problem.  

      Making use of the optimization methods a minimum of the 
objective function was determined. This enabled the 
determination of the optimum values for the unknown 
distribution of the elastic coefficient 𝑐44(𝑥) in the 
nonhomogeneous graded layer. To minimize the considered 
objective function Π the appropriate optimization procedures (of 
the Nelder-Mead type) from the Scilab software package were 
employed.  

B. Numerical experiment (synthetic data)  

      In this study, the following values of material parameters of 
the considered nonhomogeneous elastic half-space from Fig.1 
were used:  

𝑐0 = 2.564 ∙ 1010 𝑁 𝑚2⁄   ;   𝑣0 = 1849 𝑚/𝑠 ;  

𝜌0 = 7.5 ∙ 103  𝑘𝑔 𝑚3⁄    ;   ∆𝑐 𝑐0⁄ = 0.088.   



These parameters are typical for PZT-4 ceramics with elastic 
properties perturbed in the vicinity of the surface.  
      In our numerical experiments we determined the dispersion 
curves numerically. In the first step, by solving the Direct 
Problem (Eqs.2 and 3), we calculated the phase velocity curves 
for the exact values of the elastic coefficient 𝑐44(𝑥) from Fig.1. 
Exemplary dispersion curve represented in Fig.2 by solid line 
(not corrupted by noise) is regarded as an exact dispersion curve.  
      Subsequently, we added random errors (e.g., 1%, 5%, 10%) 
to these values of the phase velocity. Obtained in this way 
dispersion curves are treated in the Inverse Procedure as 

simulated experimental curves. Points marked by  indicate in 
Fig.2 exemplary synthetic (experimental) dispersion curves 
obtained by corrupting the exact dispersion curves by random 

noise on the level of 1%.  
      The upper and lower dashed lines delimit the synthetic 
dispersion curves of phase velocity which results from exact 

dispersion curves that are subject to corruption by 1% 
maximum random noise. Dispersion curves were evaluated and 
disturbed by random noise for 6 various values of normalized 
frequency 𝐷/𝐿: 𝐷/𝐿 = 0.5, 1.0, 2.0, 3.0, 4.0 and 5.0.  

 

Fig.2. Phase velocity dispersion curves of Love wave propagating in a 
nonhomogeneous Graded elastic surface layer deposited on a 
homogeneous substrate. Elastic coefficient 𝑐44(𝑥) in the surface layer 
varies according to the square root function of the depth.  

IV. RESULTS OF NUMERICAL CALCULATIONS AND 

DISCUSSION  

      The Direct Problem that describes the propagation of Love 
waves in nonhomogeneous elastic Graded Materials was 
formulated and solved numerically by employing the Transfer 
Matrix Method [10]. Theoretical (exact) dispersion curves for 
the Love surface waves, propagating in the selected 
nonhomogeneous structures, were solutions of the Direct 
Problem.  
      The nonhomogeneous surface layer from Fig.1 𝑥 ∈  [0, 𝐷] 
was divided into 10 homogeneous elastic layers. Unknown 
values of the elastic coefficient 𝑐44(𝑥) are determined in 9 
evenly spaced points [𝑥1, 𝑥2, … , 𝑥9] at the layers’ boundaries. 
Thus, an unknown vector of the elastic coefficient is sought in 

the form of: 𝑐44
𝑒𝑣𝑎𝑙 = [𝑐44(𝑥1), 𝑐44(𝑥2), …  , 𝑐44(𝑥9)]𝑇.  

      Figure 3 illustrates an exemplary distribution of elastic 

coefficient 𝑐44
𝑒𝑣𝑎𝑙 in the surface layer as a function of depth for 

the square root type profile obtained using the Inverse Method. 
Numerical experiment has been conducted for random noise 
level of 1%.  
 

 

Fig.3. Elastic coefficient 𝑐44
𝑒𝑣𝑎𝑙  evaluated from the Inverse Problem 

(dotted line). Solid line represents an exact distribution of the shear 
elastic coefficient 𝑐44(𝑥) for square root type profile (given by Eq.1a).  

Exemplary distribution of changes in the elastic coefficient 

𝑐44
𝑒𝑣𝑎𝑙  in the surface layer, resulting from the application of the 

Inverse Method, is presented in Fig.4. Numerical experiment has 
been performed for random noise level of 1% (linear profile).  

 

Fig.4. Elastic coefficient 𝑐44
𝑒𝑣𝑎𝑙  evaluated from the Inverse Problem 

(dotted line). Solid line represents an exact distribution of the shear 
elastic coefficient 𝑐44(𝑥) for the linear type profile (given by Eq.1b).  

      Figure 5 shows (obtained from the Inverse Method) an 

exemplary distribution of the elastic coefficient 𝑐44
𝑒𝑣𝑎𝑙 in the 

surface layer as a function of depth for a quadratic type profile. 
Numerical experiment has been performed for random noise 
level of 1%.  

 

Fig.5. Elastic coefficient 𝑐44
𝑒𝑣𝑎𝑙  evaluated from the Inverse Problem 

(dotted line). Solid line represents an exact distribution of the shear 
elastic coefficient 𝑐44(𝑥) for quadratic type profile (given by Eq.1c).  
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A. Relative error 

      Using the concept of norm ‖∙‖ (introduced by the Polish 
mathematician Stefan Banach), relative error of a single 
measurement of the elastic coefficient 𝑐44(𝑥) can be defined as 

follows: Relative Error = ‖𝑐44
𝑒𝑣𝑎𝑙 −  𝑐44

𝑒𝑥𝑎𝑐𝑡 ‖ ‖𝑐44
𝑒𝑥𝑎𝑐𝑡‖⁄ .  

In this work, as the norm of the numerical sequence, the 𝑙1 
norm was chosen. This norm is the sum of modulus of 
subsequent sequence elements. In this way, the relative error 
(𝑅 𝑒𝑟𝑟) of a single measurement (evaluation) of the elastic 
coefficient 𝑐44(𝑥) amounts to:  

 

(𝑅 𝑒𝑟𝑟)𝑁=1=
‖𝑐44

𝑒𝑣𝑎𝑙 − 𝑐44
𝑒𝑥𝑎𝑐𝑡 ‖

𝑙1

‖𝑐44
𝑒𝑥𝑎𝑐𝑡 ‖

𝑙1

=

|𝑐44
𝑒𝑣𝑎𝑙(𝑥1)−𝑐44

𝑒𝑥𝑎𝑐𝑡(𝑥1)|+|𝑐44
𝑒𝑣𝑎𝑙(𝑥2)−𝑐44

𝑒𝑥𝑎𝑐𝑡(𝑥2)|+⋯+ |𝑐44
𝑒𝑣𝑎𝑙(𝑥9)−𝑐44

𝑒𝑥𝑎𝑐𝑡(𝑥9)|

|𝑐44
𝑒𝑥𝑎𝑐𝑡(𝑥1)| + |𝑐44

𝑒𝑥𝑎𝑐𝑡(𝑥2)| + … + |𝑐44
𝑒𝑥𝑎𝑐𝑡(𝑥9)|

  

                                                                                            (5)  

      Similarly, the relative error for a series of 𝑁 evaluations 
(from the solution of the Inverse Problem) of the distribution of 
the elastic coefficient 𝑐44(𝑥), is defined as follows:  

 

(𝑅 𝑒𝑟𝑟)𝑁 =

{
‖(𝑐44

𝑒𝑣𝑎𝑙 )
1

− 𝑐44
𝑒𝑥𝑎𝑐𝑡 ‖

𝑙1

‖𝑐44
𝑒𝑥𝑎𝑐𝑡 ‖

𝑙1

+
‖(𝑐44

𝑒𝑣𝑎𝑙 )
2

− 𝑐44
𝑒𝑥𝑎𝑐𝑡 ‖

𝑙1

‖𝑐44
𝑒𝑥𝑎𝑐𝑡 ‖

𝑙1

+ ⋯ +
‖(𝑐44

𝑒𝑣𝑎𝑙 )
𝑁

− 𝑐44
𝑒𝑥𝑎𝑐𝑡 ‖

𝑙1

‖𝑐44
𝑒𝑥𝑎𝑐𝑡 ‖

𝑙1

   } 𝑁⁄   

                                                                                                            (6)  

For subsequent profiles of the elastic modulus from Fig.1, a 
series of 𝑁 = 10 numerical measurements of Love wave 
dispersion curves was conducted. To this end, using a random 
number generator, for each profile 10 different dispersion curves 
of Love waves were evaluated corrupting the exact dispersion 
curve by a the random error of a specific level. Each of these 
dispersion curves (synthetic data), was used in the calculations 
of the Inverse Method. Using, obtained in such a manner, elastic 

coefficient profiles (𝑐44
𝑒𝑣𝑎𝑙), the relative error of determining the 

distribution of the elastic coefficient 𝑐44(𝑥), treated as a function 
of depth, has been determined, see Table I.  

TABLE I.   

      Relative error of the determination of the elastic coefficient 
𝑐44(𝑥) evaluated from the Inverse Method, for the maximum 
random errors equal to 0.1%, 1%, 5%, and 10%. Each evaluation 

of the elastic coefficient (𝑐44
𝑒𝑣𝑎𝑙 ) results from the minimization 

of the objective function Π (Eq.4), for subsequent simulated 
dispersion curves of phase velocity.  
 

Random error 0.1 % 1 % 5 % 10 % 

(Relative error )𝑁=10  

square root profile [%] 
3.59 9.93 13.31 16.21 

(Relative error )𝑁=10  

linear profile [%] 
4.58 9.39 13.52 15.42 

(Relative error )𝑁=10  

quadratic profile [%] 
2.68 6.31 9.98 14.67 

 

As can be seen from Table I and figures 3, 4 and 5, the 

proposed Inverse Method can be effectively used to identify the 

modulus of elasticity 𝑐44(𝑥) profile changes in Graded 

Materials. The accuracy of the obtained (from Inverse Method) 

modulus of elasticity 𝑐44(𝑥) profile changes is good.  

V. CONCLUSIONS  

      An Inverse Method that uses Love surface waves for 
determining the distribution of the shear elastic coefficient 
𝑐44(𝑥) in elastic Functionally Graded Materials, from evaluated 
dispersion curves, has been developed.  
      In the paper, the Sturm-Liouville Direct Problem for the 
Love wave propagating in a nonhomogeneous elastic layer 
deposited on the homogeneous substrate was formulated and 
solved using the Transfer Matrix Method. Subsequently, the 
Inverse Problem for the ultrasonic Love wave propagating in the 
considered inhomogeneous waveguide structure was also 
formulated and solved. The Inverse Problem was formulated and 
solved as an optimization problem.  
      Formulation and solution of the Direct Problem and Inverse 
Problem for the Love wave propagating in the considered elastic 
graded structures is a novelty.  
      The results obtained in this study can be helpful in 
determining profiles of elastic coefficients changes in various 
Graded Materials. Materials of this type are produced during 
technological processes used in many industries such as: 
electronic, aviation, aerospace, automotive as well as in 
medicine and biomechanics. Moreover, the results of this work 
can also be employed in geophysics and seismology.  
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