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Estimation of the mechanical and geometrical parameters of thin coatings and
surface layers in materials is of great practical importance in engineering and
technology. Indeed, surface properties of many vital engineering components,
such as turbine blades, pistons, or bearings, directly affect the longevity and safety
of modern machinery. In this article, the authors present a novel inversion
procedure for simultaneous determination of thickness, shear elastic constant,
and density of thin coating layers in materials. The inversion procedure is based
on measurements of the dispersion curve for surface acoustic waves of the Love
type. The inverse problem is formulated as an optimization problem with the
appropriately designed objective function, depending on the material parameters
of the coating layer, ultrasonic frequency, and the experimental data, i.e. measured
phase velocity of the surface Love wave. The minimization of the objective
function provides three parameters of a thin layer, i.e. its thickness, shear elastic
constant, and density. The proposed inverse method was checked experimentally
for different layered structures, such as copper layer on steel substrate or
ceramics-on-ceramics. The agreement between the results of calculations with the
proposed inversion method and the experimental data was good.

Keywords: inverse problems; Love surface waves; elastic constants;
acoustic wave dispersion; thin layers

1. Introduction

The mechanical properties of coatings deposited on a substrate and surface layers in
graded materials are of crucial importance in the design and evaluation in modern
engineering practice [1,2]. In fact, Young’s modulus is the main mechanical parameter
characterizing the elastic stiffness of the material. For example, it can be correlated with
hardness and porosity [3], as well as with the wear and exploitation characteristics of the
material [4,5]. Mechanical properties of thin films are also of primary importance for chip
manufacturers in the electronic industry [6].

Traditional mechanical methods for characterization of the surface properties of
materials are tedious, time consuming, and most importantly, destructive. For example,
a small sample must be cut-off from the material in order for it to be examined by
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conventional metallurgical equipment. Employment of bulk and surface acoustic waves
provide truly non-destructive tools in material characterization [7]. Ultrasonic waves are
mechanical waves, whose propagation depends on mechanical properties of the material
and geometrical structures of the sample. Thus, by measuring some wave parameters, one
can try to determine characteristics of the material carrying the wave [8,9]. Since ultrasonic
signals can be transformed to electrical signals, using, for example, piezoelectric effect, the
ultrasonic signal can be easily digitized and sent to the computer for further processing.
Therefore, ultrasonic methods can be implemented on a production line for an automatic,
non-destructive control of industrial processes.

An important property of all surface waves is the fact that their amplitude decays
practically to zero in a few wavelength from the guiding surface. Thus, by changing wave
frequency, one can probe the subsurface profiles of the material. At the beginning, thin
layers in materials were investigated with Rayleigh surface waves [10–12], which possess at
least two perpendicular components of themechanical displacement (shear vertical (SV) and
longitudinal). Due to their inherent complexity, Rayleigh surface waves are rather difficult
in practical applications, since no analytical solutions for Rayleigh waves are available, even
in the material with isotropic properties. By contrast, Love surface waves have only one
shear horizontal (SH) component of vibration and closed-form analytical solutions for
Love surface waves do exist, even in anisotropic materials. However, it should be stressed
that Love surface waves exist only in materials with a surface layer which is ‘softer’ than the
substrate, i.e. when phase velocity of bulk acoustic waves in the layer is lower than that in
the substrate. Moreover, Love surface waves are sensitive only to shear elastic properties
of the surface layer and the substrate. Nevertheless, due to its simplicity, Love surface
waves are very attractive for inverse problem applications, where one must calculate the
corresponding direct problem solution many times. Love surface waves were used initially
in geophysics to study mechanical properties of selected geological structures [13,14], since
Love waves may accompany Rayleigh surface waves triggered by during earthquakes.

First attempts to use Love surface waves in inverse problems involved one-parameter
inverse methods, which enabled the calculation of only one surface layer parameter, such
as the thickness of the layer or its one elastic constant [9]. The parameter of the surface
layer was deduced from measured dispersion curve for Love waves (wave velocity as a
function of frequency). In this article, the authors propose a novel inverse method for
simultaneous determination of three surface layer parameters, i.e. its thickness, shear
elastic constant, and density. The following layered structures were studied in this article:

. thin ceramic layer on a ceramic substrate

. thin copper layer deposited electrolytically on a steel substrate.

Calculation of Love wave parameters (e.g., phase velocity, distribution of the wave
amplitude with depth) for known a priori values of material parameters of the layer and
substrate constitutes the direct problem. In this study, the direct problem was formulated
and solved.

The inverse problem constitutes determination of unknown material parameters from
the measured dispersion curves (phase velocity as a function of frequency) for Love waves.
To solve the inverse problem, one has to perform the following steps:

. solve direct problem

. determine experimentally dispersion curves

. solve inverse problem.
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In this article, the inverse problem was formulated and solved as an optimization
problem. The objective function depending on the material parameters of the structure,

frequency and experimental data (dispersion curves of the surface wave) was developed.
The dispersion curves were measured in the computerized measuring set-up. Making use of

the optimization methods, a minimum of the objective function was determined. This
enabled the determination of the unknown mechanical parameters such as shear elastic
coefficients and thickness of thin coating films. The elastic and geometrical parameters of

thin films obtained from the inverse method were used as input data in the calculations
of the direct problem. The dispersion curves resulting from the direct problem were

compared with those measured experimentally. Good conformity between theoretical and
experimental dispersion curves has been stated. This may justify the correctness of the
inverse problem solution.

2. Direct Sturm–Liouville problem

Calculation of the dispersion curves and amplitude of a surface wave for the given values
of elastic parameters of the surface layer and substrate forms a direct problem. The direct

problem (direct Sturm–Liouville problem) describes the propagation of the Love wave in
the layered media.

2.1. Love waves

The Love wave propagates in a semi-infinite layered structure, as shown in Figure 1. Here,
an elastic isotropic layer is rigidly attached to an isotropic and elastic half-space.
Mechanical vibrations of the SH surface wave are performed along the y-axis parallel to

the propagation surface and perpendicularly to the direction of propagation z. The
thickness of the layer is h. The problem considered is two-dimensional, having no variation

along the y co-ordinate.

Layer

Substrate

x

z
vL, c44L, rL

vS, c44S, rS

y

h

–h

Figure 1. Geometry of a Love wave waveguide (vL 5 vS).
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The mechanical displacement of the SH acoustic wave in the layer and substrate must
satisfy the following wave equation:

@2u

@x2
þ
@2u

@z2
¼

1

v2L,S

@2u

@t2
ð1Þ

where vL,S stands either for vL or vS. Here vL and vS are the velocities of bulk shear waves
in the layer and substrate, respectively.

The time-harmonic mechanical displacement of the surface Love wave can be
expressed as

uðx, z, tÞ ¼ f ðxÞ � exp j !t� �zð Þ½ � ð2Þ

where f (x) describes the dependence of the wave amplitude on the depth x,
(�h5 x5 þ1); � ¼ !=v is the wave number; ! is the angular frequency and v is the
phase velocity of the Love wave.

Analytical formulas for the mechanical displacement of the Love wave are derived by
substituting Equation (2) into Equation (1) and solving the resulting equation of motion
for layer and substrate region, respectively.

The mechanical displacement of the Love wave in the layer ð�h5 x � 0Þ is the
following:

uðx, z, tÞ ¼ C1 sin qðxþ hÞ½ � þ C2 cos qðxþ hÞ½ �
� �

� exp j !t� �zð Þ½ � ð3Þ

where q ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð vvL
Þ
2
� 1

q
g � � and v2L ¼ c44L=�L. Here, c44L and �L are the shear elastic

constant and density of the layer material, respectively. C1 and C2 are constants.

The mechanical displacement of the Love wave in the substrate ðx4 0Þ is as follows:

uðx, z, tÞ ¼ C3 exp �bxð Þ þ C4 exp þbxð Þ½ � � exp j !t� �zð Þ½ � ð4Þ

where b ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ð vvSÞ

2
q

g � �, and v2S ¼ c44S=�S. Here, c44S and �S are the shear elastic

constant and density of the substrate material, respectively. C3 and C4 are constants.

The amplitude f(x) of the surface Love wave should vanish for x!1. At the interface
(x ¼ 0), the continuity condition for the mechanical displacement and shear stress must be
satisfied. Moreover, at the free surface (x ¼ �h), the shear stress is equal to zero.
Therefore, the boundary conditions are in the form:

du=dx x¼�hj ¼ 0 ð5Þ

c44Ldu=dx x¼�0j ¼ c44Sdu=dx x¼þ0

�� ð6Þ

u x¼�0j ¼ u x¼þ0

�� ð7Þ

u ¼ 0 for x!1 ð8Þ

Equations (3) and (4) along with the boundary conditions (5–8) constitute the
mathematical model of the Love wave propagation in a layered structure.

2.1.1. Dispersion equation

The boundary conditions (5) and (8) imply C1 ¼ 0 and C4 ¼ 0. By substituting (3) and (4)
into the boundary conditions (6) and (7) and setting the resulting determinant equal
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to zero, we arrive at the following dispersion equation of the Love wave propagating in a

layered half-space [15]:

� ¼ tan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2 � �L
c44L

� 1

s
�
! � h

v

8<
:

9=
;� c44S

c44L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2��S

c44S

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2��L
c44L
� 1

q ¼ 0 ð9Þ

where h is the thickness of the surface layer; c44L is the shear elastic constant of the layer;

�L is the density of the layer; ! is the angular frequency; v is the phase velocity of the Love

wave; c44S is the shear elastic constant of the substrate and �S is the density of the

substrate.
It can be shown from Equation (9) that the phase velocity of the Love wave depends on

the elastic properties of the layered structure, thickness, and frequency.
The solution of the dispersion Equation (9) results in a series of discrete values of the

Love wave velocity vi, for a given value of frequency. Once the wave velocity vi is known,

the corresponding distribution fi(x) of the wave amplitude with depth x can be calculated

from Equations (2)–(4). A set of pairs vi, fiðxÞ
� �

, where vi is the surface wave velocity,

and fi(x) the distribution of the wave amplitude with depth, constitutes the solution of the

direct problem. The index i¼ 1 refers to the fundamental mode. Higher modes of Love

waves are labelled with i41.
In this study, we have restricted our attention to the propagation of the fundamental

mode of Love waves.

3. Experiment

The dispersion curves were measured in the computerized measuring set-up. In the set-up,

the sending–receiving piezoelectric transducer is driven by the TB-1000 pulser–receiver

computer card (Matec, USA). Love waves are excited by the plate transducer (1) attached

to the waveguide face (Figure 2). The sending–receiving transducer (1) is excited to shear

vibrations parallel to the waveguide surface and generates impulses of the Love wave that

propagate along the waveguide surface. Theoretical and experimental analysis of the

generation of SH surface waves by means of a plate transducer is presented in [16,17]. The

Love wave impulse generated by the transducer is reflected in multiple ways between two

opposite edges of the layered waveguide (Figure 2). The signals received by the transducer

are amplified by the TB-1000 receiver and sent into the PDA-500 digitizer card (Signatec,

USA). This card samples and digitizes the input analog signals. The accuracy of the

1

Steel Cu

Figure 2. Waveguide (Cu on steel) of the Love wave. The shear surface wave is generated by the
piezoelectric transducer plate (1) and propagates forth and back along the waveguide surface.
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measured velocity was estimated as 0.2%, i.e. �6m s�1. Measurements were carried out in
the range from 0.5 to 10MHz.

The phase velocity was determined by measuring the time of flight ‘TOF’ between two
subsequent echoes of the ultrasonic surface wave travelling in the waveguide. The values of
the time of flight ‘TOF’ were calculated using the cross-correlation method.

Figure 3 shows as an example the measured dispersion curve of the Love wave
propagating in the layered structure Cu on steel from Figure 2.

3.1. Investigated structures

The measurements have been carried out on the following layered structures:

(1) thin ceramic layer on a ceramic substrate;
(2) thin copper (Cu) layer deposited electrolytically on a steel substrate (Figure 2).

The surface ceramic layer was a piezoelectric transducer depolarized ceramic plate
glued to a piezoelectric transducer polarized ceramic substrate. The phase velocity of the
bulk SH acoustic wave in the depolarized ceramics is lower than that in the polarized
ceramics. This enables the propagation of Love waves in the considered layered ceramic
structure.

Similarly, the phase velocity of the bulk SH acoustic wave in copper is lower than that
in the steel substrate. Therefore, the Love wave can also be supported by the Cu layer
deposited on the steel substrate.

4. Inverse problem

The inverse problem relies on the determination of unknown material parameters from the
measured dispersion curves of SH surface waves (i.e. Love waves) propagating in the
considered layered structure.

0.0 2.0 4.0 6.0

Frequency (MHz)

2000

2400

2800

3200

P
ha

se
 v

el
oc

ity
 (

m
s–1

)

Love wave

Cu on steel

Experiment

Figure 3. Measured dispersion curve of the Love wave in the layered structure Cu on steel.
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To solve the inverse problem, one has to carry out the following steps:

(1) solve the direct problem;
(2) determine experimentally the dispersion curves and
(3) perform the inverse procedure.

In this article, the inverse problem was formulated and solved as an optimization
problem [18] with properly defined objective function.

4.1. Objective function

The objective function is a measure of the distance between the mathematical model of the
investigated object and the real object. The objective function � depending on the material
parameters of the structure, frequency, and experimental data (phase velocity of the
surface Love wave) was introduced and defined as

� ¼
XNe

j¼1

� h, c44L, �L,!j, vj, c44S, �S
� ��� �� ð10Þ

where Ne is the number of experimental points; !j is the measured angular frequency; vj is
the measured phase velocity; h is a guess thickness of the layer; c44L is a guess elastic
constant of the coating layer; �L is a guess density of the surface layer; c44S is the shear
elastic constant of the substrate (known ‘a priori ’) and �S is the density of the substrate
(known ‘a priori ’).

The design variables h, c44L, �L are arguments of the objective function � and
the quantities !j, vj, and c44S, �S in Equation (10) are parameters. The optimized ones are
the material parameters of the layer h, c44L, �L, whereas the material parameters of the
substrate c44S, �S are given ‘a priori’.

Making use of the optimization methods, a minimum of the objective function was
determined. This enabled the determination of the optimum values for the unknown
mechanical and geometrical parameters such as the elastic coefficient c44L, density �L, and
thickness h of the thin coating layer. To minimize the considered objective function �, the
appropriate optimization procedures from the Mathcad� software package were
employed.

The minimization problem was formulated mathematically as follows: minimize the
objective function � h, c44L, �L,!j, vj, c44S, �S

� �
subject to linear constraints (i.e. (12), (15),

(18), (21) or (24)). Employing the Mathcad package to solve the nonlinear minimization
problem, the conjugate gradient method was used. In this Mathcad solving routine, guess
initial values and constraints for the unknowns are required. The above-mentioned
constraints reflected the real physical range of the optimized variables.

5. Determination of thin layers parameters

The minimization of the objective function subject to the given constraints results in the
optimum values of unknown parameters (e.g. thickness, shear elastic constant of the
surface layer).

Various numbers of parameters of the layer were extracted from the inverse method.
We solved the inverse problem for three cases. In case 1, only thickness h is unknown.
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In case 2, we assume that the thickness h and shear elastic constant c44L are unknown, and
in case 3, three parameters, i.e. the thickness h, shear elastic constant c44L and density �L
are not known.

5.1. Ceramicsþ ceramics structure

5.1.1. Inversion of thickness h of ceramic layer (c44L and �L are given)

Initial value: h ¼ 0m ð11Þ

Constraints: 05 h5 2E� 3m ð12Þ

Results from the inverse method: h ¼ 370mm ð13Þ

5.1.2. Inversion of thickness h and c44L of ceramic layer (�L is given)

Initial values: h ¼ 1E� 3m, c44L ¼ 0:3Eþ 10Nm�2 ð14Þ

Constraints: 05 h5 2E� 3m, 1:5Eþ 105 c44L 5 3Eþ 10Nm�2 ð15Þ

Results from the inverse method: h ¼ 103 mm and c44L ¼ 2:3Eþ 10Nm�2 ð16Þ

5.1.3. Comparison of the results obtained from the inverse method with the experiment

The exact values of the material parameters of the ceramics in both the layer and in the
substrate (Table 1) were determined from the geometrical and ultrasonic measurements.
The thickness was measured by micrometer screw, and the velocity of bulk shear acoustic
waves was measured in the layer and substrate ceramics, respectively. The density of the
ceramics is known from the producer catalogue.

The thickness h¼ 370 mm resulting from the inverse method (Equation (13)) was
substituted into the dispersion equation (10) as an input data in the calculations of the
direct problem. Therefore, the phase velocity of the Love wave was calculated for several

Table 1. Exact material properties (thickness h, shear modulus c44, and density �)
of the investigated layered ceramicsþ ceramics structure.

Material h c44 (Nm�2) � (kgm�3)

Depolarized ceramics (layer) 200 mm 2.57Eþ10 7.5Eþ3
Polarized ceramics (substrate) 10mm 3.95Eþ10 7.5Eþ3
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values of frequency (theoretical dispersion curve). This theoretical dispersion curve was

compared with the experimental dispersion curve (Figure 4). Very good conformity

between the theoretical and experimental dispersion curves has been observed.
The inaccuracy when recovering the thickness of the ceramics layer may result from the

technological processes used to fabricate the layered structure (surface ceramics layer on

ceramics substrate). The surface ceramics layer was glued to the substrate and then

polished to the final thickness. As a consequence, the real structure was instead a tri-

layered structure. The third glue layer has a non-uniform thickness and undefined

elastic properties. This may result in the erroneous determination of the thickness of the

surface ceramics layer. This case is an example of the difficulties in modelling the real

structures.

5.2. Cu on steel structure

5.2.1. Inversion of thickness h of Cu layer (c44L and �L are given)

Initial value: h ¼ 0m ð17Þ

Constraints: 05 h5 2E� 3m ð18Þ

Results from the inverse method: h ¼ 541mm ð19Þ

0.0 2.0 4.0 6.0 8.0 10.0
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Experiment

Inverse method

h=370mm

Ceramic layer on ceramic substrate

Figure 4. Comparison of the experimental dispersion curve with that obtained from the inverse
method (ceramicsþ ceramics structure).
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5.2.2. Inversion of thickness h and c44L of Cu layer (�L is given)

Initial values: h ¼ 1E� 4m, c44L ¼ 3Eþ 10Nm�2 ð20Þ

Constraints: 05 h5 2E� 3m, 3Eþ 105 c44L 5 5Eþ 10Nm�2 ð21Þ

Results from the inverse method: h ¼ 473 mm and c44L ¼ 3:76Eþ 10N m�2 ð22Þ

5.2.3. Inversion of thickness h, c44L and �L of Cu layer

Initial values: h ¼ 1E� 3m, c44L ¼ 2Eþ 10Nm�2, and �L ¼ 8Eþ 3 kgm�3 ð23Þ

Constraints: 05 h5 2E� 3m, 3Eþ 105 c44L 5 5Eþ 10Nm�2, and

7Eþ 35 �L 5 9Eþ 3 kg m�3 ð24Þ

Results from the inverse method: h ¼ 486 mm, c44L ¼ 3:83Eþ 10N m�2, and

�L ¼ 9Eþ 3 kgm�3 ð25Þ

5.2.4. Comparison of the results obtained from the inverse method with the experiment

The exact values of the material parameters of the copper layer and steel substrate
(Table 2) were determined from the geometrical and ultrasonic measurements. The
thickness was measured using a metallographic microscope, and the velocity of bulk
shear acoustic waves was measured in the copper layer and steel substrate, respectively.
The densities of copper and steel are known from physical tables.

Proceeding in a similar manner as in the case of the ceramicsþ ceramics layered
structure, we compared the experimental dispersion curve to that obtained from the direct
problem and calculated for the value of the thickness h¼ 541 mm (Figure 5). This value of
the thickness has resulted from the solution of the inverse problem (Equation (19)).
Very good conformity between the theoretical and experimental dispersion curves has also
been stated.

The difference between the theoretical (from the inverse method) and experimental
thickness can be attributed to the properties of the technological properties of the Cu layer
fabrication. The copper surface layer was deposited electrolytically on the steel substrate.
From our metallographic observations it is evident that the obtained Cu surface layer has

Table 2. Exact material properties (thickness h, shear modulus c44 and
density �) of the investigated layered structure Cu on steel.

Material h c44 (Nm�2) � (kgm�3)

Cu (layer) 400mm 3.93Eþ10 8.9Eþ3
Steel (substrate) 10mm 7.99Eþ10 7.8Eþ3
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non-uniform thickness. Moreover, the structure of the surface Cu layer is porous and its
contact with the steel substrate is not perfect.

6. Conclusions

A novel inverse method, employing Love surface waves for simultaneous determination of
three surface layer parameters, i.e. its shear elastic constant, density and thickness, from
measured dispersion curves, was developed. The proposed inverse method was then tested
by ultrasonic measurements performed in selected surface structures.

Employing shear surface waves of the Love type for testing thin coating layers is more
convenient than Rayleigh waves because the velocity of the Love wave depends only upon
one shear elastic constant of the material. This greatly simplifies mathematical formulation
of the resulting direct and inverse problems. As a consequence, the proposed
inverse method provided numerical results in a few seconds on a standard personal
computer (PC).

The direct problem was formulated analytically, providing a transcendental algebraic
equation, which was solved numerically. Theoretical dispersion curves for the Love surface
waves, propagating in the selected structures, were solutions of the direct problem.

The inverse problem was formulated as an optimization problem. Consequently,
the objective function based on the dispersion equation was determined and minimized.
The minimization problem was solved using the commercial Mathcad� software package.

The elastic and geometrical parameters obtained from the inverse method were
used as input data in the calculations of the direct problem. Dispersion curves
resulting from the direct problem were compared with those measured experimentally.
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Figure 5. Comparison of the experimental dispersion curve with that obtained from the inverse
method (Cuþ steel structure).
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Good conformity between theoretical and experimental dispersion curves has been stated.
This may be evidence for the validity of the inverse method used for determining the

mechanical properties of thin coating layers by means of SH surface waves of the Love
type. In many papers [2,12,19], the agreement between the theoretical (resulting from
the inverse method) and measured dispersion curves was treated as evidence for the
correctness of the inverse method.

Many technological processes for the surface treatment (hardening, carbonizing,
nitriding, implantation and diffusion) result in profiles (of the elastic properties) that vary
with depth. For those types of profiles, the agreement between theoretical and

experimental dispersion monotonically changing curves may provide evidence for the
correctness of the inverse method.

For the structure Cu on steel the normalized distance between experimental and
theoretical dispersion curves from Figure 5, using the Euclidean norm (Appendix), equals
1.3%. Similarly, for the structure ceramics-on-ceramics, the normalized distance between
experimental and theoretical dispersion curves from Figure 4 is equal to 0.6%.

More detailed analysis describing quantitatively the distance between experimental and
theoretical dispersion curves will be performed by the authors in future papers.

The presented measuring method and theoretical analysis can be also extended to the
identification of the mechanical properties of other classes of modern materials such as

composites, intermetallics, etc.
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Appendix: Definition of the distance between two vectors (functions)

A quantitative measure of the distance between two vectors (functions) can be defined mathemat-
ically using the concept of the ‘norm’ introduced by Polish mathematician S. Banach in the first half
of the twentieth century. The distance ‘d ð f, gÞ’ between two vectors ‘f ’ and ‘g’ can be defined as:
d f, gð Þ ¼ f� g

�� ��, where: �k k is a norm, e.g., Euclidean norm. The normalized distance between two
vectors ‘Distð f, gÞ’ can also be expressed in percent (%), e.g., Distð f, gÞ ¼ f� g

�� ��	 f
�� �� � 100%.
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