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Summary

This paper presents the use of SH (Shear Horizontal) surface Love waves to determine the distributions of elastic
parameters in nonhomogeneous Functionally Graded Materials. The advantage of Love waves applied to inves-
tigate the elastic properties of materials is that the Love wave energy (in contrast to the other types of waves,
e.g., plate Lamb waves) is concentrated in the vicinity of the surface layer. The penetration depth of the SH
surface Love waves depends on the frequency. Therefore, Love waves are particularly suitable for investigating
the profiles of the mechanical properties in nonhomogeneous Graded Materials. Direct Problem (Direct Sturm-
Liouville Problem) that describes the propagation of Love waves in nonhomogeneous graded materials has been
formulated and solved numerically by applying the Transfer Matrix Method. The Inverse Procedure (Inverse
Sturm-Liouville Problem) for determining the distribution of elastic properties versus depth in the nonhomoge-
neous materials has been developed. Love wave dispersion curves in nonhomogeneous graded materials were
evaluated numerically (synthetic data). Using the evaluated dispersion curves of Love waves and a developed
Inverse Procedure the distributions of elastic shear coefficient as a function of depth (distance from the surface
of the material into the bulk) in a heterogeneous surface layer deposited on a homogeneous substrate have been
evaluated. Power type profiles (i.e., root square, linear and quadratic) of the shear elastic coefficient in the surface
layer were considered. The results of this study can be useful in the investigation of elastic properties of Graded
Materials in electronics as well as in geophysics and seismology.

PACS no. 43.35.Cg, 43.35.Pt

1. Introduction

The development of technology has led to the emergence
of new and lighter materials with higher strength and more
resistant to external factors. One of the new types of mate-
rials recently introduced into industrial practice are Func-
tionally Graded Materials (FGM), [1, 2]. The mechanical
properties of these materials vary in space. Usually these
are nonhomogeneous materials in which mechanical pa-
rameters are functions of depth (distance from the surface
into the bulk of the material).

The main properties determining the usefulness of bulk
materials and thin films for industrial applications as well
as their performance characteristics are the elastic proper-
ties [3].

Evaluation of mechanical parameters of FGM is of
great practical importance in industrial applications, e.g.,
in electronics (to optimize the performance of electron
devices and MEMS — Micro Electromechanical Systems)
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and in optoelectronics (to design an optimal construction
of semiconductor lasers).

For the measurement of geometrical and mechanical
parameters of surface layers and bulk materials classical
methods mostly mechanical methods have been used [4],
e.g., 1) surface profilometry, 2) indentation, 3) metallo-
graphic section, 4) measurement of residual stresses, 5)
X-ray diffraction, 6) neutron scattering. These methods are
very cumbersome, time consuming and destructive (e.g.,
indentation method).

Recently, ultrasonic methods have been introduced to
measure the physical properties of materials [5, 6,7, 8, 9,
10, 11, 12, 13]. Measured ultrasonic parameters (velocity
and attenuation of the wave) are strongly dependent on
the microstructure and mechanical properties of materials.
The development of electronics has enabled the accurate
measurement of ultrasonic parameters, e.g., determination
of wave velocity, from the measurement of elastic wave
pulse trains time of flight.

In this work, to investigate elastic properties of non-
homogeneous Functionally Graded Materials the authors
used ultrasonic Love waves. Love waves are shear hor-
izontal (SH) surface waves [14]. Love waves have been
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used to characterize physical parameters of solids and lig-
uids [15, 16, 17, 18, 19, 20, 21, 22] as well as in geophysics
[23, 24].

The advantage of Love waves in relation to the sur-
face Rayleigh waves is that they have only one component
of the mechanical displacement, in contrast to Rayleigh
waves, which have two components. For this reason, the
mathematical description of the propagation of surface
Love waves in the nonhomogeneous graded materials con-
siderably simplifies. Love wave energy (in contrast to the
other types of waves, e.g., plate Lamb waves) is concen-
trated in the vicinity of the surface layer. The penetration
depth of the SH surface Love waves depends on the fre-
quency. Therefore, Love waves are particularly suitable for
investigating the profiles of the mechanical properties in
nonhomogeneous Functionally Graded Materials.

The aim of the studies carried out by the authors was
to determine profiles of shear elastic modulus changes in
Graded Materials on the example of a nonhomogeneous
elastic surface layer deposited on a homogeneous sub-
strate. In considered Graded Materials, shear modulus of
elasticity is a continuous function of depth (distance from
the surface). In this purpose, the authors formulated the In-
verse Method for determining profiles of the shear elastic
coefficient changes as a function of depth (distance from
the treated surface area), based on knowledge of the dis-
persion curves of the shear Love wave, which propagates
in the considered nonhomogeneous elastic waveguides.

In order to determine the Love wave dispersion curves
numerical experiment was carried out. The exact disper-
sion curves (determined from the solution of the Direct
Sturm-Liouville Problem) have been distorted by random
noise with a preset level. Obtained in this manner disper-
sion curves (synthetic data) are treated as experimental
Love wave dispersion curves. These synthetic dispersion
curves were subsequently used in numerical calculations
of the Inverse Method.

In this work, the Direct Sturm-Liouville Problem that
describes the propagation of shear surface Love waves in
the considered nonhomogeneous elastic graded material
has been solved employing the Transfer Matrix Method.
Using a developed Inverse Method, the authors determined
the shear elastic coefficient profiles in the considered lay-
ered nonhomogeneous Graded Materials.

Formulation and solution of the Direct Problem and In-
verse Problem for the Love wave propagating in the con-
sidered waveguide structures (see Figure 1), in which the
elastic properties vary continuously with depth, is a nov-
elty.

The results of this work can be applied in the investiga-
tion of Graded Materials applied in the aviation, aerospace
and electronic industry, in fine mechanics, biomaterials as
well as in geophysics and seismology.

2. Direct Sturm-Liouville Problem

Consider the propagation of Love waves in inhomoge-
neous elastic half-space in which the shear elastic coef-
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Figure 1. Variation of the elastic coefficient c44(x), as a function
of depth, in a non-homogeneous elastic graded layer deposited
on a homogeneous elastic substrate.

ficient is a continuous function of depth, see Figure 1.
Such structures may represent elastic media occurring
in the structures used, among others, in the electronics,
aerospace and astronautic industry.

Profiles of changes in the elastic coefficient c44(x) in
a nonhomogeneous elastic layer deposited on a homoge-
neous surface (see Figure 1) are represented by the fol-
lowing formulas:
a) square root type profile n = 1/2 (profile no.1 in Fig-
ure 1)

caq(x)fco = 1= (Ac/co) [1 - (x/D)l/z]
-[H(x-D)- H(x)]. (1a)

b) linear profile (profile no.2 in Figure 1)

caq(x)fcg = 1= (Ac/co) [1 - x/D]
- [H(x - D) - H(x)], (1b)

¢) quadratic profile (profile no.3 in Figure 1)

caq(x)fcg = 1= (Ac/co) [1 - (x/D)z]
- [H(x-D)-H(x)], (Ic)

where H (x) is the Heaviside step function, D is the depth
of an inhomogeneous elastic layer.

Love wave is a Shear Horizontal (SH) surface wave
which has only one component of the mechanical displace-
ment (along the y axis) perpendicular to the direction of
propagation (z-axis) and parallel to the surface (z = 0) of
the waveguide. Love wave that propagates in an inhomo-
geneous elastic waveguides is presented in Figure 2.

Shear horizontal surface Love waves propagating in the
considered heterogeneous elastic waveguide can be repre-
sented in the form

u= f(x)exp (j(fz — wt)),

where f(x) is the amplitude of the Love wave, f is a prop-
agation constant of the wave, j = v/—1, x is the distance
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Figure 2. Love waves propagate in the direction of the z-axis.
Mechanical vibration of the Love wave is performed along the
y-axis. The shear elastic modulus c44(x) of the inhomogeneous
elastic waveguide varies continuously with the depth x.

from the surface (depth), z is the direction of wave propa-
gation and @ is an angular frequency. Love wave mechan-
ical movement is performed along the y-axis.

Mechanical field generated by Love waves propagating
in an inhomogeneous elastic graded medium satisfies the
boundary conditions
a) on a free surface (x = 0), the transverse shear stress

df(0)
dx

7yx = caa(0) exp (j(fz — 1))
is equal to zero, hence df(0)/dx = 0,
b) at large distances (x — oo) from the surface (x = 0) the
mechanical displacement of the Love wave should tend to
zero, i.e., f(o0) = 0.

The equation of motion for Love waves propagating in
an inhomogeneous elastic medium (isotropic and in cer-
tain specified directions in media with regular and hexag-

onal symmetry) is represented by the Differential Problem
[25]

d d
(w5 )+ p0 s = e, @
df o
{b(c ) =0, f(e0) =0. 3)

The Differential Problem (2 and 3) is named the Di-
rect Sturm-Liouville Problem. The solution of the Di-
rect Sturm-Liouville Problem is a set of pairs (ﬁiz, fi(x)),
where ﬂl.z is the ith eigenvalue, i = 1,2,...,n, n is the
number of modes of Love waves propagating in consid-
ered waveguide and f;(x) is the eigenvector correspond-
ing to this eigenvalue. Eigenvalue corresponds to the phase
velocity of the propagating surface Love wave, while the
eigenvector describes the distribution of the mechanical
displacement of an appropriate mode of the surface wave
as a function of depth. The set of phase velocities of the
surface Love wave for various values of frequency deter-
mines the Love wave dispersion curve.
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In the present paper, we restricted our analysis of the
propagation of Love waves in graded materials to the fun-
damental (i = 1) mode of Love waves. The reason that
the authors analyzed only the fundamental mode of Love
waves was as folllows:

A) The energy contained in the higher modes is lower than
the energy carried by the fundamental mode.

B) Mechanical displacement of the fundamental mode of
Love waves reaches a maximum value on the surface of
the waveguide. By contrast, the mechanical displacement
of the higher modes of Loves wave attains a maximum
value at some distance from the surface, in the bulk of the
material.

C) The penetration depth for higher modes of Love waves
is greater than the penetration depth for the fundamental
mode.

D) The concentration of the Love wave energy in the
vicinity of the surface for the fundamental mode is large.
The concentration of energy in the subsurface region for
higher modes is much smaller (due to their large penetra-
tion depth). For this reason, sensors of physical quantities
of liquids (e.g., viscosity and density) based on the use
of the fundamental mode of Love waves have the highest
sensitivity.

All the above mentioned properties of the Love waves
motivate the use only fundamental mode in the Love wave
based bio and chemo-sensors. The constant density of the
considered graded materials p = py =const. was assumed
throughout the paper.

2.1. Solution of the Direct Sturm-Liouville Problem

Solution of the Sturm-Liouville Direct Problem (2-3) for
arbitrary function css(x) is possible only numerically.
Therefore, in the case of power type profiles (square root,
linear and quadratic) of the elastic stiffness c44(x), the Di-
rect Sturm-Liouville Problem was solved numerically. To
this end, we applied the Transfer Matrix Method, that is
a numerical algorithm developed to analyze seismic wave
propagation in nonhomogeneous media in geophysics.

In the Transfer Matrix Method the nonhomogeneous
elastic waveguide is divided (along the vertical x-axis)
into a finite number of homogeneous layers [26, 27]. In
each homogeneous layer, an ordinary differential equation
of second order (Equation 2) occurring in the differen-
tial Sturm-Liouville Problem is replaced by the system of
two ordinary differential equations of the first order. Here,
the mechanical displacement of the Love wave and shear
stress are the unknowns. Solving this set of differential
equations in a layer, from knowledge of the mechanical
displacement and shear stress on the upper surface of the
layer, we can determine the mechanical displacement and
shear stress on the lower surface of the layer. By perform-
ing this operation for each layer we can link the mechan-
ical displacement and shear stress on the upper surface of
the domain with the mechanical displacement and shear
stress on the lower surface of the domain.

Imposing the appropriate boundary conditions on this
two boundary surfaces leads to the dispersion equation for
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the Love wave. This equation is nonlinear algebraic equa-
tion for the unknown #2, where g is the wave number of
the Love wave. Thus, the phase velocity of the Love wave
amounts to v, = w/f. Set of pairs (v,, w) determines the
phase velocity dispersion curves of the Love wave.

3. Inverse Sturm-Liouville Problem

Generally speaking, the Inverse Problem consists in de-
termining the input data (e.g., elastic coefficients of the
medium) based on knowledge of the effects of the con-
sidered physical phenomenon e.g., measured dispersion
curves of elastic wave propagating in the investigated ma-
terial [28]. The basis for solving Inverse Problems is the
ability to solve efficiently the Direct Problem.

Inverse Problem considered in this work relies on the
determination of unknown elastic parameters from the
measured dispersion curves (phase velocity as a function
of frequency) for Love waves that propagate in an inhomo-
geneous elastic waveguide. To solve the Inverse Problem
one has to perform the following steps:

e solve Direct Problem,

e determine experimentally dispersion curves,

e solve Inverse Problem.

In this paper, the Inverse Problem was formulated and
solved as an optimization problem [28] with properly de-
fined objective function.

3.1. Objective function

The objective function is a measure of the distance be-
tween the mathematical model of the investigated object
and the real object. The objective function depends on the
distribution of the elastic coefficient c44(x) in nonhomoge-
neous investigated elastic structure, frequency, and exper-
imental data (phase velocity of the surface Love wave).
The nonhomogeneous elastic layer from Figure 1 was di-
vided into 10 homogeneous layers. Values of the c4s(x)
coefficient at 9 evenly spaced discrete points of the sur-
face layer, i.e., cas(x;), i = 1,2,...,9 are treated as the
unknowns to be determined from the Inverse Procedure.
The objective function was introduced and defined as

, 2
al viexp_ ViCdl(Z‘l, ty,...,19)
Ht, 1o, ..., f9) = Z =P .
v

i

“

where N, is the number of experimental frequencies, vl.eXp
is the measured phase velocity, vfal is the calculated phase
velocity, 11 = caa(x1), 12 = caa(x2), ..., to = c4a(x9),
represent operational variables, that are determined from
the solution of the Inverse Sturm-Liouville Problem.

The objective function IT represents the distance be-
tween the data obtained from the experiment v; © and data
predicted from the theoretical model v¢*!. Optimized are
elastic parameters of the layer, i.e., c44(x), whereas the ma-
terial parameters of the substrate are given (c44(x19) = ¢o

and py).
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Making use of the optimization methods a minimum of
the objective function was determined. This enabled the
determination of the optimum values for the unknown dis-
tribution of the elastic coefficient c44(x) in the nonhomo-
geneous graded layer. To minimize the considered objec-
tive function IT the appropriate optimization procedures
from the Scilab software package were employed [29, 30].

To solve the nonlinear minimization problem the opti-
mization numerical procedures of the Nelder-Mead type
[31] were used. In this solving routine, guess initial values
for the unknowns are required. Initial guess values should
be taken from the physical conditions. Their values must
be realistic.

3.2. Numerical experiment (synthetic data)

In this study, the following values of material parameters
of the considered nonhomogeneous elastic layer of depth
D from Figure 1 were used:
co = 2.564- 10" N/m?,
po = 1.5 10° kg/m?,

vy = 1849 m/s,
Ac/cy = 0.088.

vo is the velocity of the bulk shear wave in the substrate.
Homogeneous elastic half-space extends from x = D to
X = oo.

These parameters are typical for PZT-4 [32] ceramics
with elastic properties perturbed in the vicinity of the sur-
face.

In our numerical experiments we determined the dis-
persion curves numerically. In the first step, by solving
the Direct Problem (Equations 2 and 3), we calculated the
phase velocity curves (see Figures 3, 4 and 5) for the exact
values of the elastic coefficient from Figure 1. The disper-
sion curves represented in Figures 3, 4 and 5 by solid lines
(not corrupted by noise) are regarded as exact dispersion
curves.

Subsequently, we added random errors (e.g., 1%, 5%,
10%) to these values of the phase velocity. Obtained in
this way dispersion curves are treated in the Inverse Pro-
cedure as simulated experimental curves. Points marked
in Figures 3, 4 and 5 by diamond symbols indicate exem-
plary synthetic (experimental) dispersion curves obtained
by corrupting the exact dispersion curves by random noise
on the level of £1%.

The upper and lower dashed lines delimit the synthetic
dispersion curves of phase velocity which results from
exact dispersion curves (solid lines) that are subject to
corruption by +1% maximum random noise. Dispersion
curves were evaluated and disturbed by random noise for
6 various values of normalized frequency D/L: D/L =
0.5, 1.0, 2.0, 3.0, 4.0 and 5.0.

Numerical calculations have been performed by using
the software package Scilab. In the numerical calculations,
we assumed the value of thickness D/L = 0.4mm. In
this case, the value of D/L = 1 corresponds to frequency
4.6225MHz, and D/L = 5 corresponds to frequency
23.11 MHz. Measurement of surface waves velocity in the
MHz frequency range are usually performed in quantita-
tive nondestructive evaluation experiments (QNDE).
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Figure 3. Phase velocity dispersion curves of Love wave prop-
agating in a nonhomogeneous Graded elastic surface layer de-
posited on a homogeneous substrate. Elastic coefficient c44(x) in
the surface layer varies according to the square root function of
the depth.
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Figure 4. Phase velocity dispersion curves of Love wave prop-
agating in a nonhomogeneous Graded elastic surface layer de-
posited on a homogeneous substrate. Elastic coefficient c44(x) in
the surface layer is a linear function of the depth.

4. Results of numerical calculations and
discussion

The Direct Problem that describes the propagation of
Love waves in nonhomogeneous elastic Graded Materi-
als was formulated and solved numerically by employing
the Transfer Matrix Method [26, 27]. Theoretical (exact)
dispersion curves for the Love surface waves, propagating
in the selected nonhomogeneous structures, were solutions
of the Direct Problem.

The Inverse Problem was formulated and solved as an
Optimization Problem. Consequently, the objective func-
tion depending on the unknown distribution of the elastic
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Figure 5. Phase velocity dispersion curves of Love wave prop-
agating in a nonhomogeneous Graded elastic surface layer de-
posited on a homogeneous substrate. Elastic coefficient c44(x) in
the surface layer follows the quadratic function of the depth.

coefficient c44(x) in nonhomogeneous Graded Materials
was determined and minimized. The minimization prob-
lem was solved using the computer program implemented
in Scilab software package. The Nelder-Mead algorithm
was employed, that uses the concept of Simplex along with
nonlinear optimization [29, 30].

The nonhomogeneous surface layer from Figure 1, x €
[0, D] was divided into 10 homogeneous elastic layers.
Unknown values of the elastic coefficient c44(x) are de-
termined in 9 evenly spaced points [x], X7, ..., X9] at the
layers’ boundaries. Thus, an unknown vector of the elastic
coefficient is sought in the form of

A T
= [644(X1),C44(x2),--~,C44(x9)] .

Minimization of the objective function subject to the given
constraints (co — Ac < cqa(x;) < ¢, i € [1...9] results
in the optimum values of unknown parameters (i.e., the
distribution of shear elastic coefficient ¢! with depth).

Figure 6 illustrates an exemplary distribution of elastic
coefficient cjzal in the surface layer as a function of depth
for the square root type profile obtained using the Inverse
Method (dotted line). Numerical experiment has been con-
ducted for random noise level of 1%. Solid line represents
an exact profile given by plot no.1 in Figure 1.

Exemplary distribution of changes in the elastic coeffi-
cient ¢ in the surface layer for the linear type profile,
resulting from the application of the Inverse Method, is
presented in Figure 7. Numerical experiment has been per-
formed for random noise level of 1%.

Figure 8 shows (obtained from the Inverse Method) an
exemplary distribution of the elastic coefficient ;" in the
surface layer as a function of depth for a quadratic type
profile. Numerical experiment has been performed for ran-

dom noise level of 1%.
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Figure 6. Elastic coefficient ¢, evaluated from the Inverse Prob-
lem (dotted line). Solid line represents an exact distribution of the
shear elastic coefficient c44(x) for square root type profile (given
by Equation 1a).

4.1. Relative error

The relative error is a quantitative measure of the distance
between the evaluated (from the Inverse Method) profile
of the elastic coefficient ¢ and the exact profile ¢5i** of
the elastic coefficient from Figure 1, e.g., linear, quadratlc
etc.

Using the concept of norm ||-|| (introduced by the Polish
mathematician Stefan Banach), relative error of a single
measurement of the elastic coefficient c44(x) can be de-
fined as follows: Relative Error = |5 — 53| |/][cS3|.

In this work, as the norm of the numerical sequence,
the /; norm was chosen. This norm is the sum of modulus
of subsequent sequence elements. In this way, the relative
error (R err) of a single measurement (evaluation) of the
elastic coefficient c44(x) amounts to

| |ceval exacl | | !
1

(Rerr)y=i = ———a—— &)

I Zﬁ"‘“ll

[ICCle(xl) _ cexact(xl)l + Iceval(xz) _ cexact(x )I
+oe e (xo) — CZE“‘(XQ»)I]
[l el + e el + -+ + e e

Similarly, the relative error for a series of N evaluations
(from the solution of the Inverse Problem) of the distribu-
tion of the elastic coefficient c44(x), is defined as

| | (ceval Ci4act | | I

” exact”ll

| | (Ceval CZTC[ | | I
exact | |

(Rerr)y = {

[lon

”(Ceval)N cexact | |1
+ exact = : N. (6)
ey iy

For subsequent profiles of the elastic modulus from Fig-
ure 1, a series of N = 10 numerical measurements of Love
wave dispersion curves was conducted. To this end, using
a random number generator, for each profile 10 different

Figure 7. Elastic coefficient c5;" evaluated from the Inverse Prob-

lem (dotted line). Solid line represents an exact distribution of the
shear elastic coefficient c44(x) for the linear type profile (given by
Equation 1b).

eval

Figure 8. Elastic coefficient cj," evaluated from the Inverse Prob-
lem (dotted line). Solid line represents an exact distribution of
the shear elastic coefficient for quadratic type profile (given by
Equation 1c).

dispersion curves of Love waves were evaluated corrupt-
ing the exact dispersion curve by the random error of a
specific level. Each of these dispersion curves (synthetic
data), was used in the calculations of the Inverse Method.
Using, obtained in such a manner, elastic coefficient pro-
files cif(‘l, the relative error of determining the distribution
of the elastic coefficient c44(x), treated as a function of
depth, has been determined, see Table I.

Table I contains the relative error for the series of N =
10 evaluations of the unknown distribution of the modulus
of elasticity c44(x) for the subsequent profiles from Fig-
ure 1 and the different levels of random noise. 10 inver-
sions for each type of the profile and each level of noise
have been performed. In Table I, the average values of 10
subsequent inversions are inserted.

As can be seen from Table I and Figures 6, 7 and 8,
the proposed Inverse Method can be effectively used to
identify the modulus of elasticity c44(x) profile changes in
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Table I. Relative error (Relativeerror) y-1( of the determination of
the elastic coefficient c44(x) evaluated from the Inverse Method,
for the maximum random errors equal to 0.1%, 1%, 5%, and
10%. Each evaluation of the elastic coefficient (cjf‘l) results from
the minimization of the objective function IT (Equation 4), for

subsequent simulated dispersion curves of phase velocity.

Random error 0.1% 1% 5% 10%

square root profile [%] 3.59 9.93 1331 16.21
linear profile [%] 458 939 1352 1542
quadratic profile [%] 2.68 6.31 9.98 14.67

Graded Materials. The accuracy of the obtained (from In-
verse Method) modulus of elasticity c44(x) profile changes
is good.

5. Conclusions

In this work, Love waves which are horizontally polarized
surface waves were employed to determine the distribution
of the elastic coefficient profiles in Graded Materials.

An Inverse Method that uses Love waves for determin-
ing the distribution of the shear elastic coefficient cqq(x)
in elastic Functionally Graded Materials, from evaluated
dispersion curves, has been developed.

The advantage of Love waves with respect to the Ray-
leigh wave is that the Love wave has only one component
of the mechanical displacement, in contrast to Rayleigh
waves which possess two components of the mechanical
displacement. For this reason, the mathematical descrip-
tion of the propagation of SH Love waves in Graded Ma-
terials is significantly simplified.

In the paper, the Sturm-Liouville Direct Problem for
the Love wave propagating in a nonhomogeneous elastic
layer deposited on the homogeneous substrate was formu-
lated and solved using the Transfer Matrix Method. Subse-
quently, the Inverse Problem for the ultrasonic Love wave
propagating in the considered inhomogeneous waveguide
structure was also formulated and solved. The Inverse
Problem was formulated and solved as an optimization
problem.

Formulation and solution of the Direct Problem and In-
verse Problem for the Love wave propagating in the con-
sidered elastic graded structures is a novelty.

The results obtained in this study can be helpful in de-
termining profiles of elastic coefficients changes in various
Graded Materials. Materials of this type are produced dur-
ing technological processes used in many industries such
as: electronic, aviation, aerospace, automotive as well as in
medicine and biomechanics. Moreover, the results of this
work can also be employed in geophysics and seismology
for investigation structure and the elastic properties of the
Earth’s interior, [33].
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